Completion to Chordal Distance-Hereditary Graphs: A Quartic Vertex-Kernel | SpringerLink
Skip to main content

Completion to Chordal Distance-Hereditary Graphs: A Quartic Vertex-Kernel

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12911))

Included in the following conference series:

Abstract

Given a class of graphs \(\mathcal {G}\) and a graph \(G = (V,E)\), the aim of the \(\mathcal {G}\) -completion problem is to find a set of at most k non-edges whose addition in G results in a graph that belongs to \(\mathcal {G}\). Completion to chordal or to natural subclasses of chordal graphs cover a broad range of classical NP-Complete problems, that have been extensively studied. When \(\mathcal {G}\) coincides with the class of chordal graphs, the problem is the well-known Minimum Fill-In problem. Other notable examples include completion to proper interval, threshold or trivially perfect graphs. Aforementioned problems are known to admit polynomial kernels, and it has been conjectured that completion to subclasses of chordal graphs further characterized by a finite number of forbidden induced subgraphs admits polynomial kernels. We investigate this line of research by considering completion to an important subclass of chordal graphs, namely chordal distance-hereditary graphs. Chordal distance-hereditary graphs are a natural generalization of trivially perfect graphs and have been extensively studied from the structural viewpoint. However, to the best of our knowledge, completion to chordal distance-hereditary graphs has not received attention so far. We thus initiate the first algorithmic study of this problem, and prove its NP-Completeness and that it admits a kernel with \(O(k^4)\) vertices. To that aim, we rely on several known characterizations of chordal distance-hereditary graphs. In particular, such graphs admit a tree-like decomposition, so-called clique laminar tree. Unlike all aforementioned subclasses of chordal graphs, this decomposition does not correspond to a partition of the vertex set at hand. To circumvent this, we propose an approach based on the notion of clique (minimal) separator decomposition and a new characterization of chordal distance-hereditary graphs that might be of independent interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9723
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 12154
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aravind, N., Sandeep, R., Sivadasan, N.: Dichotomy results on the hardness of H-free edge modification problems. SIAM J. Discrete Math. 31(1), 542–561 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bandelt, H.J., Mulder, H.M.: Distance-hereditary graphs. J. Comb. Theory Ser. B 41(2), 182–208 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berry, A., Pogorelcnik, R., Simonet, G.: An introduction to clique minimal separator decomposition. Algorithms 3(2), 197–215 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bessy, S., Paul, C., Perez, A.: Polynomial kernels for 3-leaf power graph modification problems. Discrete Appl. Math. 158(16), 1732–1744 (2010). https://doi.org/10.1016/j.dam.2010.07.002

  5. Bessy, S., Perez, A.: Polynomial kernels for proper interval completion and related problems. Inf. Comput. 231, 89–108 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bliznets, I., Cygan, M., Komosa, P., Pilipczuk, M., Mach, L.: Lower bounds for the parameterized complexity of minimum fill-in and other completion problems. ACM Trans. Algorithm (TALG) 16(2), 1–31 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brandstädt, A., Hundt, C.: Ptolemaic graphs and interval graphs are leaf powers. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, pp. 479–491. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78773-0_42

    Chapter  Google Scholar 

  8. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph classes: a survey. SIAM (1999)

    Google Scholar 

  9. Brešar, B., Changat, M., Klavžar, S., Kovše, M., Mathews, J., Mathews, A.: Cover-incomparability graphs of posets. Order 25(4), 335–347 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary properties. Inf. Process. Lett. 58(4), 171–176 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cai, L., Cai, Y.: Incompressibility of \(H\)-free edge modification problems. Algorithmica 71(3), 731–757 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Crespelle, C., Drange, P.G., Fomin, F.V., Golovach, P.A.: A survey of parameterized algorithms and the complexity of edge modification. CoRR abs/2001.06867 (2020). https://arxiv.org/abs/2001.06867

  13. Drange, P.G., Dregi, M.S., Lokshtanov, D., Sullivan, B.D.: On the threshold of intractability. In: Bansal, N., Finocchi, I. (eds.) ESA 2015. LNCS, vol. 9294, pp. 411–423. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48350-3_35

    Chapter  Google Scholar 

  14. Drange, P.G., Pilipczuk, M.: A polynomial kernel for trivially perfect editing. Algorithmica 80(12), 3481–3524 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. El-Mallah, E.S., Colbourn, C.J.: The complexity of some edge deletion problems. IEEE Trans. Circ. Syst. 35(3), 354–362 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fagin, R.: Degrees of acyclicity for hypergraphs and relational database schemes. J. ACM (JACM) 30(3), 514–550 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fomin, F.V., Lokshtanov, D., Saurabh, S., Zehavi, M.: Kernelization: Theory of Parameterized Preprocessing. Cambridge University Press, New York (2019)

    Google Scholar 

  18. Garey, M.R., Johnson, D.S.: Computers and Intractability, vol. 29. WH freeman, New York (2002)

    Google Scholar 

  19. Golumbic, M.C., Kaplan, H., Shamir, R.: On the complexity of DNA physical mapping. Adv. Appl. Math. 15(3), 251–261 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  20. Guillemot, S., Havet, F., Paul, C., Perez, A.: On the (non-)existence of polynomial kernels for P\(_l\)-free edge modification problems. Algorithmica 65(4), 900–926 (2013). https://doi.org/10.1007/s00453-012-9619-5

  21. Guo, J.: Problem Kernels for NP-complete edge deletion problems: split and related graphs. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 915–926. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77120-3_79

    Chapter  MATH  Google Scholar 

  22. Howorka, E.: On metric properties of certain clique graphs. J. Comb. Theory Ser. B 27(1), 67–74 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  23. Howorka, E.: A characterization of ptolemaic graphs. J. Graph Theory 5(3), 323–331 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kaplan, H., Shamir, R., Tarjan, R.E.: Tractability of parameterized completion problems on chordal, strongly chordal, and proper interval graphs. SIAM J. Comput. 28(5), 1906–1922 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kay, D.C., Chartrand, G.: A characterization of certain ptolemaic graphs. Can. J. Math. 17, 342–346 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kratsch, S., Wahlström, M.: Two edge modification problems without polynomial kernels. Discrete Optim. 10(3), 193–199 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu, Y., Wang, J., Guo, J.: An overview of kernelization algorithms for graph modification problems. Tsinghua Sci. Tech. 19(4), 346–357 (2014)

    Article  MathSciNet  Google Scholar 

  28. Mancini, F.: Graph modification problems related to graph classes. Ph.D. degree dissertation, University of Bergen Norway 2 (2008)

    Google Scholar 

  29. Markenzon, L., Waga, C.F.E.M.: New results on ptolemaic graphs. Discrete Appl. Math. 196, 135–140 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Marx, D., Sandeep, R.B.: Incompressibility of \(H\)-free edge modification problems: Towards a dichotomy. In: Grandoni, F., Herman, G., Sanders, P. (eds.) 28th Annual European Symposium on Algorithms, ESA 2020, September 7–9, 2020, Pisa, Italy (Virtual Conference). LIPIcs, vol. 173, pp. 72:1–72:25. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.org/10.4230/LIPIcs.ESA.2020.72

  31. Natanzon, A., Shamir, R., Sharan, R.: Complexity classification of some edge modification problems. Discrete Appl. Math. 113(1), 109–128 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  32. Nieminen, J.: The center and the distance center of a ptolemaic graph. Oper. Res. Lett. 7(2), 91–94 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  33. Takahara, Y., Teramoto, S., Uehara, R.: Longest path problems on ptolemaic graphs. IEICE Trans. Inf. Syst. 91(2), 170–177 (2008)

    Article  Google Scholar 

  34. Tarjan, R.E.: Decomposition by clique separators. Discrete Math. 55, 221–232 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  35. Uehara, R., Uno, Y.: Laminar structure of ptolemaic graphs with applications. Discrete Appl. Math. 157(7), 1533–1543 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Yannakakis, M.: Computing the minimum fill-in is NP-complete. SIAM J. Algebraic Discrete Methods 2(1), 77–79 (1981)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 749022. Benjamin Gras is partially supported by the French National Research Agency, ANR project GraphEn (ANR-15-CE40-0009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Gras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Crespelle, C., Gras, B., Perez, A. (2021). Completion to Chordal Distance-Hereditary Graphs: A Quartic Vertex-Kernel. In: Kowalik, Ł., Pilipczuk, M., Rzążewski, P. (eds) Graph-Theoretic Concepts in Computer Science. WG 2021. Lecture Notes in Computer Science(), vol 12911. Springer, Cham. https://doi.org/10.1007/978-3-030-86838-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86838-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86837-6

  • Online ISBN: 978-3-030-86838-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics