Similarity Measures Based on Compiled Arguments | SpringerLink
Skip to main content

Similarity Measures Based on Compiled Arguments

  • Conference paper
  • First Online:
Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12897))

  • 792 Accesses

Abstract

Argumentation is a prominent approach for reasoning with inconsistent information. It is based on the justification of formulas by arguments generated from propositional knowledge bases. It has recently been shown that similarity between arguments should be taken into account when evaluating arguments. Consequently, different similarity measures have been proposed in the literature. Although these measures satisfy desirable properties, they suffer from the side effects of being syntax-dependent. Indeed, they may miss redundant information, leading to undervalued similarity. This paper overcomes this shortcoming by compiling arguments, which amounts to transforming their formulas into clauses, and using the latter for extending existing measures and principles. We show that the new measures deal properly with the critical cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 13727
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 17159
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    \(^3\) \(||\) stands for the cardinality of a set.

  2. 2.

    The letter \(\mathtt {A}\) in \(\mathtt {A}\)-\(\mathtt { CR}\) stands for “average”.

  3. 3.

    \(\mathtt {U}\) in \(\mathtt {U}\)-\(\mathtt { CR}\) stands for “union”.

References

  1. Amgoud, L., Prade, H.: Using arguments for making and explaining decisions. Artif. Intell. 173, 413–436 (2009)

    Article  MathSciNet  Google Scholar 

  2. Zhong, Q., Fan, X., Luo, X., Toni, F.: An explainable multi-attribute decision model based on argumentation. Expert Syst. Appl. 117, 42–61 (2019)

    Article  Google Scholar 

  3. Governatori, G., Maher, M., Antoniou, G., Billington, D.: Argumentation semantics for defeasible logic. J. Log. Comput. 14(5), 675–702 (2004)

    Article  MathSciNet  Google Scholar 

  4. García, A., Simari, G.: Defeasible logic programming: an argumentative approach. Theory Pract. Logic Program. 4(1–2), 95–138 (2004)

    Article  MathSciNet  Google Scholar 

  5. Sycara, K.: Persuasive argumentation in negotiation. Theor. Decis. 28, 203–242 (1990)

    Article  Google Scholar 

  6. Hadidi, N., Dimopoulos, Y., Moraitis, P.: Argumentative alternating offers. In: Proceedings of the International Conference on Autonomous Agents and Multi-agent Systems (AAMAS 2010), pp. 441–448 (2010)

    Google Scholar 

  7. Besnard, P., Hunter, A.: A logic-based theory of deductive arguments. Artif. Intell. 128(1–2), 203–235 (2001)

    Article  MathSciNet  Google Scholar 

  8. Amgoud, L., Besnard, P.: Logical limits of abstract argumentation frameworks. J. Appl. Non-Classical Logics 23(3), 229–267 (2013)

    Article  MathSciNet  Google Scholar 

  9. Vesic, S.: Identifying the class of maxi-consistent operators in argumentation. J. Artif. Intell. Res. 47, 71–93 (2013)

    Article  MathSciNet  Google Scholar 

  10. Amgoud, L., Ben-Naim, J.: Axiomatic foundations of acceptability semantics. In: Proceedings of the Fifteenth International Conference on Principles of Knowledge Representation and Reasoning KR, pp. 2–11 (2016)

    Google Scholar 

  11. Amgoud, L., David, V.: Measuring similarity between logical arguments. In: Proceedings of the Sixteenth International Conference on Principles of Knowledge Representation and Reasoning KR, pp. 98–107 (2018)

    Google Scholar 

  12. Amgoud, L., Bonzon, E., Delobelle, J., Doder, D., Konieczny, S., Maudet, N.: Gradual semantics accounting for similarity between arguments. In: Proceedings of the Sixteenth International Conference on Principles of Knowledge Representation and Reasoning KR, pp. 88–97 (2018)

    Google Scholar 

  13. Amgoud, L., David, V.: An adjustment function for dealing with similarities. In Prakken, H., Bistarelli, S., Santini, F., Taticchi, C., (eds.) Computational Models of Argument - Proceedings of COMMA 2020, Perugia, Italy, 4–11 September 2020. Volume 326 of Frontiers in Artificial Intelligence and Applications, pp. 79–90. IOS Press (2020)

    Google Scholar 

  14. Amgoud, L., David, V.: A general setting for gradual semantics dealing with similarity. In: 35th AAAI Conference en Artificial Intelligence (AAAI 2021), Virtual Conference, United States, AAAI: Association for the Advancement of Artificial Intelligence. AAAI Press, February 2021

    Google Scholar 

  15. Amgoud, L., David, V., Doder, D.: Similarity measures between arguments revisited. In: Kern-Isberner, G., Ognjanović, Z. (eds.) ECSQARU 2019. LNCS (LNAI), vol. 11726, pp. 3–13. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29765-7_1

    Chapter  Google Scholar 

  16. Lang, J., Liberatore, P., Marquis, P.: Propositional independence-formula-variable independence and forgetting. J. Artif. Intell. Res. 18, 391–443 (2003)

    Article  MathSciNet  Google Scholar 

  17. Amgoud, L., Besnard, P., Vesic, S.: Equivalence in logic-based argumentation. J. Appl. Non-Classical Logics 24(3), 181–208 (2014)

    Article  MathSciNet  Google Scholar 

  18. Jaccard, P.: Nouvelles recherches sur la distributions florale. Bulletin de la Société Vaudoise des Sciences Naturelles 37, 223–270 (1901)

    Google Scholar 

  19. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor David .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Amgoud, L., David, V. (2021). Similarity Measures Based on Compiled Arguments. In: Vejnarová, J., Wilson, N. (eds) Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2021. Lecture Notes in Computer Science(), vol 12897. Springer, Cham. https://doi.org/10.1007/978-3-030-86772-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86772-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86771-3

  • Online ISBN: 978-3-030-86772-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics