Multivariate Conditional Transformation Models. Application to Thyroid-Related Hormones | SpringerLink
Skip to main content

Multivariate Conditional Transformation Models. Application to Thyroid-Related Hormones

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2021 (ICCSA 2021)

Abstract

Multivariate Conditional Transformation Models (MCTMs) were recently proposed as a new multivariate regression technique. These models characterize jointly the covariates effects on the marginal distributions of the responses and their correlations without requiring parametric assumptions. Flexibility, in both the responses and covariates effects are achieved using Bernstein basis polynomials. In this paper we compare MCTMs estimations with the well established Copula Generalized Additive Models (CGAMLSS). MCTMs conditional correlation estimations outperform the CGAMLSS ones, showing lower estimation error, and variability. Finally, MCTMs were applied to the joint modelling of three thyroid hormones concentrations – Thyroid Stimulating Hormone (TSH), triiodothyronine (T3), and thyroxine (T4) – conditionally on age. Our results show how the marginal distribution and correlations of the hormones concentrations are influenced by the age of the patients.

Supported by Grant from the Program of Aid to the Predoctoral Stage (ED481A-2018/154) of the Galician Regional Authority (Consellería de Cultura, Educación e Ordenación Universitaria, Xunta de Galicia) and European Social Fund 2014/2020. Developed under the project MTM2017-83513-R and co-financed by the Ministry of Economy and Competitiveness (SPAIN) and by the European Regional Development Fund (ERDF). Also supported by the project ED431C 2020/20, financed by the Competitive Research Unit Consolidation 2020 Programme of the Galician Regional Authority (Xunta de Galicia).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Duarte, E., et al.: Applying spatial copula additive regression to breast cancer screening data. In: Gervasi, O., et al. (eds.) ICCSA 2017. LNCS, vol. 10405, pp. 586–599. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62395-5_40

    Chapter  Google Scholar 

  2. Espasandín-Domínguez, J.: Assessing the relationship between markers of glycemic control through flexible copula regression models. Stat. Med. 38(27), 5161–5181 (2019). https://doi.org/10.1002/sim.8358

    Article  MathSciNet  Google Scholar 

  3. Espasandín-Domínguez, J., et al.: Bivariate copula additive models for location, scale and shape with applications in biomedicine. In: Gil, E., Gil, E., Gil, J., Gil, M.Á. (eds.) The Mathematics of the Uncertain. SSDC, vol. 142, pp. 135–146. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73848-2_13

    Chapter  Google Scholar 

  4. Hadlow, N.C., Rothacker, K.M., Wardrop, R., Brown, S.J., Lim, E.M., Walsh, J.P.: The relationship between TSH and free T4 in a large population is complex and nonlinear and differs by age and sex. J. Clin. Endocrinol. Metab. 98(7), 2936–2943 (2013). https://doi.org/10.1210/jc.2012-4223

    Article  Google Scholar 

  5. Hoermann, R., Eckl, W., Hoermann, C., Larisch, R.: Complex relationship between free thyroxine and TSH in the regulation of thyroid function. Eur. J. Endocrinol. 162(6), 1123–1129 (2010). https://doi.org/10.1530/EJE-10-0106

    Article  Google Scholar 

  6. Hoermann, R., Larisch, R., Dietrich, J.W., Midgley, J.E.: Derivation of a multivariate reference range for pituitary thyrotropin and thyroid hormones: diagnostic efficiency compared with conventional single-reference method. Eur. J. Endocrinol. 174(6), 735–743 (2016). https://doi.org/10.1530/EJE-16-0031

    Article  Google Scholar 

  7. Jonklaas, J., Razvi, S.: Reference intervals in the diagnosis of thyroid dysfunction: treating patients not numbers. Lancet Diab. Endocrinol. 7(6), 473–483 (2019). https://doi.org/10.1016/S2213-8587(18)30371-1

    Article  Google Scholar 

  8. Klein, N., Hothorn, T., Barbanti, L., Kneib, T.: Multivariate conditional transformation models. Scand. J. Stat. (2019). https://doi.org/10.1111/sjos.12501

    Article  Google Scholar 

  9. Kumar, M.S., Safa, A.M., Deodhar, S.D., Schumacher, O.P.: The relationship of thyroid-stimulating hormone (TSH), thyroxine (T4), and triiodothyronine (T3) in primary thyroid failure. Am. J. Clin. Pathol. 68(6), 747–751 (1977). https://doi.org/10.1093/ajcp/68.6.747

    Article  Google Scholar 

  10. Marra, G., Radice, R.: Bivariate copula additive models for location, scale and shape. Comput. Stat. Data Anal. 112, 99–113 (2017). https://doi.org/10.1016/j.csda.2017.03.004

    Article  MathSciNet  MATH  Google Scholar 

  11. Spencer, C., LoPresti, J., Patel, A., Guttler, R., Eigen, A., Shen, D., Gray, D., Nicoloff, J.: Applications of a new chemiluminometric thyrotropin assay to subnormal measurement. J. Clin. Endocrinol. Metab. 70(2), 453–460 (1990). https://doi.org/10.1210/jcem-70-2-453

    Article  Google Scholar 

  12. Taylor, P.N., et al.: Global epidemiology of hyperthyroidism and hypothyroidism. Nat. Rev. Endocrinol. 14(5), 301 (2018). https://doi.org/10.1038/nrendo.2018.18

    Article  Google Scholar 

  13. UCLA Endocrine Center (UCLA Health): What are normal thyroid hormone levels? (nd). https://www.uclahealth.org/endocrine-center/normal-thyroid-hormone-levels#:~:text=TSH%20normal%20values%20are%200.5%20to%205.0%20mIU%2FL. Accessed 15 June 2021

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Díaz-Louzao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Díaz-Louzao, C., Lado-Baleato, Ó., Gude, F., Cadarso-Suárez, C. (2021). Multivariate Conditional Transformation Models. Application to Thyroid-Related Hormones. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12949. Springer, Cham. https://doi.org/10.1007/978-3-030-86653-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86653-2_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86652-5

  • Online ISBN: 978-3-030-86653-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics