Abstract
We present a framework to generate synthetic historical documents with precise ground truth using nothing more than a collection of unlabeled historical images. Obtaining large labeled datasets is often the limiting factor to effectively use supervised deep learning methods for Document Image Analysis (DIA). Prior approaches towards synthetic data generation either require human expertise or result in poor accuracy in the synthetic documents. To achieve high precision transformations without requiring expertise, we tackle the problem in two steps. First, we create template documents with user-specified content and structure. Second, we transfer the style of a collection of unlabeled historical images to these template documents while preserving their text and layout. We evaluate the use of our synthetic historical documents in a pre-training setting and find that we outperform the baselines (randomly initialized and pre-trained). Additionally, with visual examples, we demonstrate a high-quality synthesis that makes it possible to generate large labeled historical document datasets with precise ground truth.
L. Vögtlin and M. Drazyk—Both authors contributed equally to this work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
This can be done with any other word processing tool such as MS Word.
References
Alberti, M., Seuret, M., Ingold, R., Liwicki, M.: A pitfall of unsupervised pre-training (2017). arXiv: 1703.04332
Alberti, M., Vögtlin, L., Pondenkandath, V., Seuret, M., Ingold, R., Liwicki, M.: Labeling, cutting, grouping: an efficient text line segmentation method for medieval manuscripts. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 1200–1206. IEEE (2019)
Baird, H.S.: Document Image Defect Models. In: Baird, H.S., Bunke, H., Yamamoto, K. (eds.) Structured Document Image Analysis, pp. 546–556. Springer, Heidelberg (1992). https://doi.org/10.1007/978-3-642-77281-8_26
Bluche, T., Louradour, J., Messina, R.: Scan, attend and read: end-to-end handwritten paragraph recognition with MDLSTM attention. In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), vol. 01, pp. 1050–1055 (2017)
Capobianco, S., Marinai, S.: DocEmul: a toolkit to generate structured historical documents. In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), vol. 01, pp. 1186–1191 (2017)
Chu, C., Zhmoginov, A., Sandler, M.: CycleGAN, a master of steganography (2017)
Clausner, C., Pletschacher, S., Antonacopoulos, A.: Aletheia - an advanced document layout and text ground-truthing system for production environments. In: 2011 International Conference on Document Analysis and Recognition, pp. 48–52 (2011)
Edwards, H.J.: Caesar: The Gallic War. Harvard University Press Cambridge, Cambridge (1917)
Fischer, A., Frinken, V., Fornés, A., Bunke, H.: Transcription alignment of Latin manuscripts using hidden Markov models. In: Proceedings of the 2011 Workshop on Historical Document Imaging and Processing, HIP 2011, pp. 29–36. Association for Computing Machinery (2011)
Goodfellow, I.J., et al.: Generative Adversarial Networks (2014)
Graves, A., Fernández, S., Gomez, F., Schmidhuber, J.: Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks. In: Proceedings of the 23rd International Conference on Machine Learning, ICML 2006, pp. 369–376. Association for Computing Machinery (2006)
Guan, M., Ding, H., Chen, K., Huo, Q.: Improving handwritten OCR with augmented text line images synthesized from online handwriting samples by style-conditioned GAN. In: 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 151–156 (2020)
Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)
Journet, N., Visani, M., Mansencal, B., Van-Cuong, K., Billy, A.: DocCreator: a new software for creating synthetic ground-truthed document images. J. Imaging 3(4), 62 (2017)
Kang, L., Riba, P., Wang, Y., Rusiñol, M., Fornés, A., Villegas, M.: GANwriting: content-conditioned generation of styled handwritten word images. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12368, pp. 273–289. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58592-1_17
Kieu, V.C., Visani, M., Journet, N., Domenger, J.P., Mullot, R.: A character degradation model for grayscale ancient document images. In: Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), pp. 685–688 (2012)
Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017)
Li, H., Wang, W.: Reinterpreting CTC training as iterative fitting. Pattern Recog. 105, 107392 (2020)
Marti, U.V., Bunke, H.: The IAM-database: an English sentence database for offline handwriting recognition. IJDAR 5(1), 39–46 (2002)
Masci, J., Meier, U., Cireşan, D., Schmidhuber, J.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds.) ICANN 2011. LNCS, vol. 6791, pp. 52–59. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21735-7_7
Mehri, M., Héroux, P., Mullot, R., Moreux, J.P., Coüasnon, B., Barrett, B.: HBA 1.0: a pixel-based annotated dataset for historical book analysis. In: Proceedings of the 4th International Workshop on Historical Document Imaging and Processing, HIP 2017, pp. 107–112. Association for Computing Machinery (2017)
Märgner, V., Abed, H.E.: Tools and metrics for document analysis systems evaluation. In: Doermann, D., Tombre, K. (eds.) Handbook of Document Image Processing and Recognition, pp. 1011–1036. Springer, London (2014). https://doi.org/10.1007/978-0-85729-859-1_33
Pondenkandath, V., Alberti, M., Diatta, M., Ingold, R., Liwicki, M.: Historical document synthesis with generative adversarial networks. In: 2019 International Conference on Document Analysis and Recognition Workshops (ICDARW), vol. 5, pp. 146–151 (2019)
Scius-Bertrand, A., Voegtlin, L., Alberti, M., Fischer, A., Bui, M.: Layout analysis and text column segmentation for historical Vietnamese steles. In: Proceedings of the 5th International Workshop on Historical Document Imaging and Processing, HIP 2019, pp. 84–89. , Association for Computing Machinery (2019)
Seuret, M., Chen, K., Eichenbergery, N., Liwicki, M., Ingold, R.: Gradient-domain degradations for improving historical documents images layout analysis. In: 2015 13th International Conference on Document Analysis and Recognition (ICDAR), pp. 1006–1010 (2015)
Strauß, T., Leifert, G., Labahn, R., Hodel, T., Mühlberger, G.: ICFHR2018 competition on automated text recognition on a READ dataset. In: 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 477–482 (2018)
Studer, L., et al.: A comprehensive study of imagenet pre-training for historical document image analysis. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 720–725 (2019)
Taigman, Y., Polyak, A., Wolf, L.: Unsupervised Cross-Domain Image Generation (2016)
Tensmeyer, C., Brodie, M., Saunders, D., Martinez, T.: Generating realistic binarization data with generative adversarial networks. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 172–177 (2019)
Touvron, H., Douze, M., Cord, M., Jégou, H.: Powers of layers for image-to-image translation (2020). arXiv:2008.05763
Zhang, K.A., Cuesta-Infante, A., Xu, L., Veeramachaneni, K.: SteganoGAN: high capacity image steganography with GANs (2019). arXiv:1901.03892
Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2017)
Acknowledgment
The work presented in this paper has been partially supported by the HisDoc III project funded by the Swiss National Science Foundation with the grant number 205120_169618. A big thanks to our co-workers Paul Maergner and Linda Studer for their support and advice.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Vögtlin, L., Drazyk, M., Pondenkandath, V., Alberti, M., Ingold, R. (2021). Generating Synthetic Handwritten Historical Documents with OCR Constrained GANs. In: Lladós, J., Lopresti, D., Uchida, S. (eds) Document Analysis and Recognition – ICDAR 2021. ICDAR 2021. Lecture Notes in Computer Science(), vol 12823. Springer, Cham. https://doi.org/10.1007/978-3-030-86334-0_40
Download citation
DOI: https://doi.org/10.1007/978-3-030-86334-0_40
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-86333-3
Online ISBN: 978-3-030-86334-0
eBook Packages: Computer ScienceComputer Science (R0)