A Novel Sigma-Lognormal Parameter Extractor for Online Signatures | SpringerLink
Skip to main content

A Novel Sigma-Lognormal Parameter Extractor for Online Signatures

  • Conference paper
  • First Online:
Document Analysis and Recognition – ICDAR 2021 (ICDAR 2021)

Abstract

Online signature analysis can be widely applied in e-security and health. The latest method combines the Sigma-Lognormal model and visual feedback to extract the kinematic and spatial parameters of online signatures, but the model still does not perform well in complex handwriting signatures. Inaccurate parameters cannot reveal health information about users and cannot correctly reconstruct the online signature. This paper presents a novel Sigma-Lognormal parameter extractor for this drawback. On the one hand, this extractor estimates the parameters of pen-up and optimizes the parameters without the stroke midpoint. On the other hand, the extractor dynamically corrects the salient point position deviation by the velocity minimum point and velocity intersection point of adjacent strokes. The new extractor solves the parameter distortion caused by the ignored pen-ups and the hidden time deviation. The experiments demonstrate the accuracy and robustness of our method on multiple databases and verifiers, and the results show that the performance of the new extractor is better than the state-of-the-art method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bhattacharya, U., Plamondon, R., Dutta Chowdhury, S., Goyal, P., Parui, S.K.: A sigma-lognormal model-based approach to generating large synthetic online handwriting sample databases. Int. J. Doc. Anal. Recognit. (IJDAR) 20(3), 155–171 (2017). https://doi.org/10.1007/s10032-017-0287-5

    Article  Google Scholar 

  2. Carmona-Duarte, C., Ferrer, M.A., Parziale, A., Marcelli, A.: Temporal evolution in synthetic handwriting. Pattern Recogn. 68, 233–244 (2017)

    Article  Google Scholar 

  3. Choudhury, H., Prasanna, S.M.: Representation of online handwriting using multi-component sinusoidal model. Pattern Recogn. 91, 200–215 (2019)

    Article  Google Scholar 

  4. Dhieb, T., Ouarda, W., Boubaker, H., Halima, M.B., Alimi, A.M.: Online Arabic writer identification based on beta-elliptic model. In: 2015 15th International Conference on Intelligent Systems Design and Applications (ISDA), pp. 74–79. IEEE (2015)

    Google Scholar 

  5. Diaz, M., Fischer, A., Ferrer, M.A., Plamondon, R.: Dynamic signature verification system based on one real signature. IEEE Trans. Cybern. 48(1), 228–239 (2016)

    Article  Google Scholar 

  6. Djeziri, S., Guerfali, W., Plamondon, R., Robert, J.: Learning handwriting with pen-based systems: computational issues. Pattern Recogn. 35(5), 1049–1057 (2002)

    Article  Google Scholar 

  7. Duval, T., Rémi, C., Plamondon, R., Vaillant, J., O’Reilly, C.: Combining sigma-lognormal modeling and classical features for analyzing graphomotor performances in kindergarten children. Hum. Mov. Sci. 43, 183–200 (2015)

    Article  Google Scholar 

  8. Faundez-Zanuy, M., Fierrez, J., Ferrer, M.A., Diaz, M., Tolosana, R., Plamondon, R.: Handwriting biometrics: applications and future trends in e-security and e-health. Cogn. Comput. 12(5), 940–953 (2020)

    Article  Google Scholar 

  9. Ferrer, M.A., Diaz, M., Carmona-Duarte, C., Plamondon, R.: iDeLog: iterative dual spatial and kinematic extraction of sigma-lognormal parameters. IEEE Trans. Pattern Anal. Mach. Intell. 42(1), 114–125 (2018)

    Article  Google Scholar 

  10. Fischer, A., Diaz, M., Plamondon, R., Ferrer, M.A.: Robust score normalization for DTW-based on-line signature verification. In: 2015 13th International Conference on Document Analysis and Recognition (ICDAR), pp. 241–245. IEEE (2015)

    Google Scholar 

  11. Gomez-Barrero, M., Galbally, J., Fierrez, J., Ortega-Garcia, J., Plamondon, R.: Enhanced on-line signature verification based on skilled forgery detection using sigma-lognormal features. In: 2015 International Conference on Biometrics (ICB), pp. 501–506. IEEE (2015)

    Google Scholar 

  12. Kholmatov, A., Yanikoglu, B.: SUSIG: an on-line signature database, associated protocols and benchmark results. Pattern Anal. Appl. 12(3), 227–236 (2009)

    Article  MathSciNet  Google Scholar 

  13. Liwicki, M., et al.: Signature verification competition for online and offline skilled forgeries (sigcomp2011). In: 2011 International Conference on Document Analysis and Recognition, pp. 1480–1484. IEEE (2011)

    Google Scholar 

  14. Lu, X., Fang, Y., Kang, W., Wang, Z., Feng, D.D.: SCUT-MMSIG: a multimodal online signature database. In: Zhou, J., et al. (eds.) CCBR 2017. LNCS, vol. 10568, pp. 729–738. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69923-3_78

    Chapter  Google Scholar 

  15. Martín-Albo, D., Plamondon, R., Vidal, E.: Improving sigma-lognormal parameter extraction. In: 2015 13th International Conference on Document Analysis and Recognition (ICDAR), pp. 286–290. IEEE (2015)

    Google Scholar 

  16. O’Reilly, C., Plamondon, R.: Development of a sigma-lognormal representation for on-line signatures. Pattern Recogn. 42(12), 3324–3337 (2009)

    Article  Google Scholar 

  17. Pertsinakis, M.: Effect of visual feedback on the static and kinematic characteristics of handwriting. J. Forensic Doc. Exam. 27, 5–21 (2017)

    Article  Google Scholar 

  18. Plamondon, R., Alimi, A.M., Yergeau, P., Leclerc, F.: Modelling velocity profiles of rapid movements: a comparative study. Biol. Cybern. 69(2), 119–128 (1993)

    Article  Google Scholar 

  19. Plamondon, R., O’reilly, C., Galbally, J., Almaksour, A., Anquetil, É.: Recent developments in the study of rapid human movements with the kinematic theory: applications to handwriting and signature synthesis. Pattern Recognit. Lett. 35(SI), 225–235 (2014)

    Google Scholar 

  20. Plamondon, R., O’Reilly, C., Ouellet-Plamondon, C.: Strokes against stroke–strokes for strides. Pattern Recogn. 47(3), 929–944 (2014)

    Article  Google Scholar 

  21. Plamondon, R., Parizeau, M.: Signature verification from position, velocity and acceleration signals: a comparative study. In: 9th International Conference on Pattern Recognition, pp. 260–261. IEEE Computer Society (1988)

    Google Scholar 

  22. Rubin, D.B.: Inference and missing data. Biometrika 63(3), 581–592 (1976)

    Article  MathSciNet  Google Scholar 

  23. Sae-Bae, N., Memon, N.: Online signature verification on mobile devices. IEEE Trans. Inf. Forensics Secur. 9(6), 933–947 (2014)

    Article  Google Scholar 

  24. Van Gemmert, A., Plamondon, R., O’Reilly, C.: Using the sigmalognormal model to investigate handwriting of individuals with Parkinson’s disease. In: Proceedings of 16th Biennial Conference on the International Graphonomics Society, Nara Japon, pp. 119–122 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zili Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, J., Zhang, Z. (2021). A Novel Sigma-Lognormal Parameter Extractor for Online Signatures. In: Lladós, J., Lopresti, D., Uchida, S. (eds) Document Analysis and Recognition – ICDAR 2021. ICDAR 2021. Lecture Notes in Computer Science(), vol 12823. Springer, Cham. https://doi.org/10.1007/978-3-030-86334-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86334-0_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86333-3

  • Online ISBN: 978-3-030-86334-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics