Abstract
The critical node detection problem describes a class of graph problems that involves identifying sets of nodes that influence a given graph metric. One variant of this problem is to find the nodes that - when removed from the graph - maximize the number of connected components in the remaining graph. This is an example of a practical problem with multiple real-world applications in epidemic control, immunization strategies, social networks, biology, etc. This paper proposes the use of a simple GA to identify the set of the critical nodes of the problem without designing special problem specific variation operators. Problem specific information is used only in the fitness function and the constraint handling technique. We show that this simple approach performs as well as state-of-art methods.
This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS - UEFISCDI, project number PN-III-P1-1.1-TE-2019-1633.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
downloaded from http://individual.utoronto.ca/mventresca/cnd.html, last accessed 05.09.2020.
References
Aringhieri, R., Grosso, A., Hosteins, P., Scatamacchia, R.: A general evolutionary framework for different classes of critical node problems. Eng. Appl. Artif. Intell. 55, 128–145 (2016)
Boginski, V., Commander, C.W.: Identifying critical nodes in protein-protein interaction networks. In: Clustering Challenges in Biological Networks, pp. 153–167. World Scientific (2009)
Borgatti, S.P.: Identifying sets of key players in a social network. Comput. Math. Organ. Theory 12(1), 21–34 (2006). https://doi.org/10.1007/s10588-006-7084-x
Cacchiani, V., Caprara, A., Toth, P.: Scheduling extra freight trains on railway networks. Transp. Res. Part B: Methodol. 44(2), 215–231 (2010)
Chen, W., Jiang, M., Jiang, C., Zhang, J.: Critical node detection problem for complex network in undirected weighted networks. Phys. A: Stat. Mech. Appl. 538 (2020). https://doi.org/10.1016/j.physa.2019.122862
Cohen, R., Erez, K., Ben-Avraham, D., Havlin, S.: Resilience of the internet to random breakdowns. Phys. Rev. Lett. 85(21), 4626 (2000)
Dagdeviren, O., Akram, V.: An energy-efficient distributed cut vertex detection algorithm for wireless sensor networks. Comput. J. 57(12), 1852–1869 (2013). https://doi.org/10.1093/comjnl/bxt128
Dagdeviren, O., Akram, V., Tavli, B., Yildiz, H., Atilgan, C.: Distributed detection of critical nodes in wireless sensor networks using connected dominating set (2017). https://doi.org/10.1109/ICSENS.2016.7808815
Furini, F., Ljubić, I., Malaguti, E., Paronuzzi, P.: On integer and bilevel formulations for the k-vertex cut problem. Math. Program. Comput. 12(2), 133–164 (2019). https://doi.org/10.1007/s12532-019-00167-1
Goh, K.I., Cusick, M.E., Valle, D., Childs, B., Vidal, M., Barabási, A.L.: The human disease network. Proc. Natl. Acad. Sci. 104(21), 8685–8690 (2007)
Iyer, S., Killingback, T., Sundaram, B., Wang, Z.: Attack robustness and centrality of complex networks. PloS One 8(4), e59613 (2013)
Lalou, M., Tahraoui, M., Kheddouci, H.: Component-cardinality-constrained critical node problem in graphs. Discrete Appl. Math. 210, 150–163 (2016). https://doi.org/10.1016/j.dam.2015.01.043
Lalou, M., Tahraoui, M., Kheddouci, H.: The critical node detection problem in networks: a survey. Comput. Sci. Rev. 28, 92–117 (2018). https://doi.org/10.1016/j.cosrev.2018.02.002
Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties is NP-complete. J. Comput. Syst. Sci. 20(2), 219–230 (1980)
Lobo, F., Lima, C.F., Michalewicz, Z.: Parameter Setting in Evolutionary Algorithms, vol. 54. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-69432-8
Lozano, M., García-Martínez, C., Rodriguez, F.J., Trujillo, H.M.: Optimizing network attacks by artificial bee colony. Inf. Sci. 377, 30–50 (2017)
Milo, R., et al.: Superfamilies of evolved and designed networks. Science 303(5663), 1538–1542 (2004)
Min, S., Jiandong, L., Yan, S.: Critical nodes detection in mobile ad hoc network, vol. 2, pp. 336–340 (2006). https://doi.org/10.1109/AINA.2006.136
Paudel, N., Georgiadis, L., Italiano, G.: Computing critical nodes in directed graphs. ACM J. Exp. Algorithmics 23 (2018). https://doi.org/10.1145/3228332
Reimand, J., Tooming, L., Peterson, H., Adler, P., Vilo, J.: GraphWeb: mining heterogeneous biological networks for gene modules with functional significance. Nucleic Acids Res. 36, 452–459 (2008)
Rezaei, J., Zare-Mirakabad, F., MirHassani, S., Marashi, S.A.: EIA-CNDP: an exact iterative algorithm for critical node detection problem. Comput. Oper. Res. 127 (2021). https://doi.org/10.1016/j.cor.2020.105138
Shapley, L.S.: 17. A Value for n-Person Games, pp. 307–317. Princeton University Press (1953). DOIurl10.1515/9781400881970-018
Shen, S., Smith, J.C.: Polynomial-time algorithms for solving a class of critical node problems on trees and series-parallel graphs. Networks 60(2), 103–119 (2012)
Shen, S., Smith, J.C., Goli, R.: Exact interdiction models and algorithms for disconnecting networks via node deletions. Discrete Optim. 9(3), 172–188 (2012)
Ventresca, M., Harrison, K., Ombuki-Berman, B.: The bi-objective critical node detection problem. Eur. J. Oper. Res. 265(3), 895–908 (2018). https://doi.org/10.1016/j.ejor.2017.08.053
Ventresca, M.: Global search algorithms using a combinatorial unranking-based problem representation for the critical node detection problem. Comput. Oper. Res. 39(11), 2763–2775 (2012)
Veremyev, A., Prokopyev, O.A., Pasiliao, E.L.: An integer programming framework for critical elements detection in graphs. J. Comb. Optim. 28(1), 233–273 (2014). https://doi.org/10.1007/s10878-014-9730-4
Yang, R., Huang, L., Lai, Y.C.: Selectivity-based spreading dynamics on complex networks. Phys. Rev. e 78(2), 026111 (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Suciu, MA., Gaskó, N., Képes, T., Lung, R.I. (2021). A Simple Genetic Algorithm for the Critical Node Detection Problem. In: Sanjurjo González, H., Pastor López, I., García Bringas, P., Quintián, H., Corchado, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2021. Lecture Notes in Computer Science(), vol 12886. Springer, Cham. https://doi.org/10.1007/978-3-030-86271-8_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-86271-8_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-86270-1
Online ISBN: 978-3-030-86271-8
eBook Packages: Computer ScienceComputer Science (R0)