Abstract
As blockchain-based platforms become increasingly ubiquitous, malicious actors looking to either break the underlying platform or leverage it for nefarious purposes will also become more common. In order to combat these actors, robust mechanisms to detect and address illicit activities must be developed. Many of the current approaches to detecting abnormal activity in blockchain-based platforms are platform specific. In this paper we provide some generic parameters that should be valid for most permissionless blockchain platforms, particularly permissionless blockchain platforms that can be used for malicious transaction detection. We then analyze those parameters in the Ethereum cryptocurrency platform. These parameters include volumetric transaction rate and unique address activity.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2009). https://bitcoin.org/bitcoin.pdf
The Chainalysis 2020 Crypto Crime Report. https://go.chainalysis.com/2020-Crypto-Crime-Report.html
Editing the Uneditable Blockchain - Accenture. https://www.accenture.com/us-en/insight-editing-uneditable-blockchain
Agarwal, R., Barve, S., Shukla, S.K.: Applied Network Science 6(1), 9 (2021). https://doi.org/10.1007/s41109-020-00338-3
Pham, T., Lee, S.: Anomaly detection in the bitcoin system - a network perspective (2017)
Zhang, M., Zhang, X., Zhang, Y., Lin, Z.: 29th USENIX Security Symposium (USENIX Security 20) (USENIX Association, 2020), pp. 2775–2792 (2020). https://www.usenix.org/conference/usenixsecurity20/presentation/zhang-mengya
Bartoletti, M., Pes, B., Serusi, S.: 2018 Crypto Valley Conference on Blockchain Technology (CVCBT), pp. 75–84 (2018). https://doi.org/10.1109/CVCBT.2018.00014
Vitalik, B.: A next-generation smart contract and decentralized application platform (2014). https://github.com/ethereum/wiki/wiki/White-Paper
Ethereum Daily Transactions Chart. https://etherscan.io/chart/tx
McDonald, J.: Data transformations - Handbook of Biological Statistics. http://www.biostathandbook.com/transformation.html
Burnham, K.P., Anderson, D.R.: Model Selection and Multimodel Inference : A Practical Information-Theoretic Approach, 2nd edn. Springer, New York (2002)
Lognormal Distribution - MATLAB & Simulink. https://www.mathworks.com/help/stats/lognormal-distribution.html
Jurkiewicz, P., Rzym, G., Boryło, P.: Flow length and size distributions in campus Internet traffic. Comput. Commun. 167, 15–30 (2021). https://doi.org/10.1016/j.comcom.2020.12.016
Adamic, L.A., Lukose, R.M., Puniyani, A.R., Huberman, B.A.: Search in power-law networks. Phys. Rev. E 64(4), 046135 (2001). https://doi.org/10.1103/physreve.64.046135
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Kanth, V., McEachen, J., Tummala, M. (2022). Parameter Identification for Malicious Transaction Detection in Blockchain Protocols. In: Prieto, J., Partida, A., Leitão, P., Pinto, A. (eds) Blockchain and Applications. BLOCKCHAIN 2021. Lecture Notes in Networks and Systems, vol 320. Springer, Cham. https://doi.org/10.1007/978-3-030-86162-9_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-86162-9_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-86161-2
Online ISBN: 978-3-030-86162-9
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)