Deep Reinforcement Learning for Resource Allocation in Multi-platoon Vehicular Networks | SpringerLink
Skip to main content

Deep Reinforcement Learning for Resource Allocation in Multi-platoon Vehicular Networks

  • Conference paper
  • First Online:
Wireless Algorithms, Systems, and Applications (WASA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12938))

Abstract

Grouping vehicles into different platoons is a promising cooperative driving application to enhance the traffic safety and traffic capacity of future vehicular networks. However, fast-changing channel conditions in high mobility multi-platoon vehicular networks cause tremendous uncertainty for resource allocation. Moreover, the increasing popularity of various emerging vehicle-to-infrastructure (V2I) applications may results in some service demands with conflicting quality of experience. In this paper, we formulate a multi-objective resource allocation problem, which maximizes the transmission success rate of intra-platoon communications and the capacity of V2I communications. To efficiently solve this problem, we formulate the long-term resource allocation problem as a partially observable stochastic game, where each platoon acts as an agent and each resource allocation solution corresponds to an action taken by the platoon. Then a Contribution-based Parallel Proximal Policy Optimization (CP-PPO) method is employed so that each agent learns subchannel selection and power allocation strategies in a distributed manner. In addition, we propose a deep reinforcement learning (DRL) based framework to achieve a good tradeoff in the multi-objective problem. Under appropriate reward design and training mechanism, extensive simulation results demonstrate the significant performance superiority of our proposed method over other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang, F.: Parallel control and management for intelligent transportation systems: concepts, architectures, and applications. IEEE Trans. Intell. Transp. Syst. 11(3), 630–638 (2010)

    Article  Google Scholar 

  2. Nardini, G., Virdis, A., Campolo, C., Molinaro, A., Stea, G.: Cellular-V2X communications for platooning: design and evaluation. Sensors 18(5), 1527 (2018)

    Article  Google Scholar 

  3. Molina-Masegosa, R., Gozalvez, J.: LTE-V for sidelink 5G V2X vehicular communications: a new 5G technology for short-range vehicle-to-everything communications. IEEE Veh. Technol. Mag. 12(4), 30–39 (2017)

    Article  Google Scholar 

  4. Ashraf, M.I., Liu, C., Bennis, M., Saad, W., Hong, C.S.: Dynamic resource allocation for optimized latency and reliability in vehicular networks. IEEE Access 6, 63:843-63:858 (2018)

    Article  Google Scholar 

  5. Liang, L., Xie, S., Li, G.Y., Ding, Z., Yu, X.: Graph-based resource sharing in vehicular communication. IEEE Trans. Wirel. Commun. 17(7), 4579–4592 (2018)

    Article  Google Scholar 

  6. Liang, L., Ye, H., Li, G.Y.: Toward intelligent vehicular networks: a machine learning framework. IEEE Internet Things J. 6(1), 124–135 (2019)

    Article  Google Scholar 

  7. Zheng, Q., Zheng, K., Zhang, H., Leung, V.C.M.: Delay-optimal virtualized radio resource scheduling in software-defined vehicular networks via stochastic learning. IEEE Trans. Veh. Technol. 65(10), 7857–7867 (2016)

    Article  Google Scholar 

  8. Ye, H., Li, G.Y., Juang, B.F.: Deep reinforcement learning based resource allocation for V2V communications. IEEE Trans. Veh. Technol. 68(4), 3163–3173 (2019)

    Article  Google Scholar 

  9. Salahuddin, M.A., Al-Fuqaha, A., Guizani, M.: Reinforcement learning for resource provisioning in the vehicular cloud. IEEE Wirel. Commun. 23(4), 128–135 (2016)

    Article  Google Scholar 

  10. 3rd Generation Partnership, Technical Specification Group Radio Access Networks; Study enhancement 3GPP Support for 5G V2X Service; (Release 15). Document 3GPP TR 22.886 V15.1.0 (March 2017)

    Google Scholar 

  11. Meshgi, H., Zhao, D., Zheng, R.: Optimal resource allocation in multicast device-to-device communications underlaying LTE networks. IEEE Trans. Veh. Technol. 66(9), 8357–8371 (2017)

    Article  Google Scholar 

  12. Liang, L., Ye, H., Li, G.Y.: Spectrum sharing in vehicular networks based on multi-agent reinforcement learning. IEEE J. Sel. Areas Commun. 37(10), 2282–2292 (2019)

    Article  Google Scholar 

  13. Tan, M.: Multi-agent reinforcement learning: Independent vs. cooperative agents. In: Proceedings of the Tenth International Conference on Machine Learning, pp. 330–337 (1993)

    Google Scholar 

  14. Nasir, Y.S., Guo, D.: Multi-agent deep reinforcement learning for dynamic power allocation in wireless networks. IEEE J. Sel. Areas Commun. 37(10), 2239–2250 (2019)

    Article  Google Scholar 

  15. Schulman, J., Moritz, P., Levine, S., Jordan, M., Abbeel, P.: High-dimensional continuous control using generalized advantage estimation. arXiv preprint arXiv:1506.02438 (2015)

Download references

Acknowledgement

This work is supported by National Natural Science Foundation of China (No. 62071230).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, H., Ji, J., Zhu, K., Wang, R. (2021). Deep Reinforcement Learning for Resource Allocation in Multi-platoon Vehicular Networks. In: Liu, Z., Wu, F., Das, S.K. (eds) Wireless Algorithms, Systems, and Applications. WASA 2021. Lecture Notes in Computer Science(), vol 12938. Springer, Cham. https://doi.org/10.1007/978-3-030-86130-8_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86130-8_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86129-2

  • Online ISBN: 978-3-030-86130-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics