Identification of Superior Improvement Trajectories for Production Lines via Simulation-Based Optimization with Reinforcement Learning | SpringerLink
Skip to main content

Identification of Superior Improvement Trajectories for Production Lines via Simulation-Based Optimization with Reinforcement Learning

  • Conference paper
  • First Online:
Advances in Production Management Systems. Artificial Intelligence for Sustainable and Resilient Production Systems (APMS 2021)

Abstract

An increasing variety of products contributes to the challenge of efficient manufacturing on production lines, e.g. in the Fast Moving Consumer Goods (FMCG) sector. Due to the complexity and multitude of adjustment levers, the identification of economic actions for improvement is challenging. Reinforcement learning offers a way to deal with such complex problems with little problem-specific adaptation. This paper presents a method for decision support for economic productivity improvement of production lines. A combination of discrete event simulation and reinforcement learning is used to identify efficient, sequential trajectories of improvements. The approach is validated with a fill-and-pack line of the FMCG industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 21449
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nakajima, S.: Introduction to TPM. Productivity Press, Cambridge, Mass, Total productive maintenance (1988)

    Google Scholar 

  2. Bartkowiak, T., Ciszak, O., Jablonski, P., Myszkowski, A., Wisniewski, M.: A simulative study approach for improving the efficiency of production process of floorboard middle layer. In: Hamrol, A., Ciszak, O., Legutko, S., Jurczyk, M. (eds.) Advances in Manufacturing. LNME, pp. 13–22. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-68619-6_2

    Chapter  Google Scholar 

  3. Bech, S., Brunoe, T.D., Nielsen, K., Andersen, A.-L.: Product and Process Variety Management: Case study in the Food Industry. Procedia CIRP (2019)

    Google Scholar 

  4. Butollo, F.: Digitalization and the geographies of production: Towards reshoring or global fragmentation? Competition & Change (2020)

    Google Scholar 

  5. Andersson, C., Bellgran, M.: On the complexity of using performance measures: Enhancing sustained production improvement capability by combining OEE and productivity. J. Manuf. Syst. 35, 144–154 (2015)

    Google Scholar 

  6. Del Carmen Ng Corrales, L., Lambán, M.P., Hernandez Korner, M.E., Royo, J.: Overall equipment effectiveness: systematic literature review and overview of different approaches. Applied Sciences (2020)

    Google Scholar 

  7. Koren, Y., Hu, S.J., Weber, T.W.: Impact of Manufacturing System Configuration on Performance. CIRP Annals (1998)

    Google Scholar 

  8. Yegul, M.F., Erenay, F.S., Striepe, S., Yavuz, M.: Improving configuration of complex production lines via simulation-based optimization. Computers & Industrial Engineering (2017)

    Google Scholar 

  9. Xi, S., Chen, Q., MacGregor Smith, J., Mao, N., Yu, A., Zhang, H.: A new method for solving buffer allocation problem in large unbalanced production lines. Int. J. Prod. Res. 58, 6846–6867 (2020)

    Google Scholar 

  10. Rabe, M., Deininger, M., Juan, A.A.: Speeding up computational times in simheuristics combining genetic algorithms with discrete-Event simulation. Simulation Modelling Practice and Theory (2020)

    Google Scholar 

  11. Karlsson, I.: An interactive decision support system using simulation-based optimization and knowledge extraction. Dissertation Series. Doctoral thesis, monograph, University of Skövde (2018). http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-16369

  12. Trigueiro de Sousa Junior, W., Barra Montevechi, J.A., Carvalho Miranda, R. de, Teberga Campos, A.: Discrete simulation-based optimization methods for industrial engineering problems: a systematic literature review. Computers & Industrial Engineering (2019)

    Google Scholar 

  13. Ylipää, T., Skoogh, A., Bokrantz, J., Gopalakrishnan, M.: Identification of maintenance improvement potential using OEE assessment. Int. J. Productivity Perf. Mgmt. 1, 126–143 (2017). https://doi.org/10.1108/IJPPM-01-2016-0028

  14. Wu, K., Zheng, M., Shen, Y.: A generalization of the Theory of Constraints: Choosing the optimal improvement option with consideration of variability and costs. IISE Trans. 3, 276–287 (2020). https://doi.org/10.1080/24725854.2019.1632503

  15. Burggraf, P., Wagner, J., Koke, B.: Artificial Intelligence in Production Management: A Review of the Current State of Affairs and Research Trends in Academia. IEEE, Piscataway (2018)

    Google Scholar 

  16. Burggräf, P., Wagner, J., Koke, B., Bamberg, M.: Performance assessment methodology for AI-supported decision-making in production management. Procedia CIRP (2020)

    Google Scholar 

  17. Gosavi, A.: Solving markov decision processes via simulation. In: Handbook of Simulation Optimization, vol. 216 (2014)

    Google Scholar 

  18. Sutton, R.S., Barto, A.: Reinforcement Learning. An Introduction. Adaptive Computation and Machine Learning. The MIT Press, Cambridge, MA (2018)

    MATH  Google Scholar 

  19. Gosavi, A.: Simulation-Based Optimization. Parametric Optimization Techniques and Reinforcement Learning. Springer, New York 55 (2015)

    Google Scholar 

  20. Juan, A.A., Faulin, J., Grasman, S.E., Rabe, M., Figueira, G.: A review of simheuristics: Extending metaheuristics to deal with stochastic combinatorial optimization problems. Operations Research Perspectives (2015)

    Google Scholar 

  21. Hubscher-Younger, T., Mosterman, P.J., DeLand, S., Orqueda, O., Eastman, D.: Integrating discrete-event and time-based models with optimization for resource allocation. IEEE (2012)

    Google Scholar 

  22. Tempelmeier, H.: Practical considerations in the optimization of flow production systems. Int. J. Prod. Res. 1, 149–170 (2003). https://doi.org/10.1080/00207540210161641

  23. Bergeron, D., Jamali, M.A., Yamamoto, H.: Modelling and analysis of manufacturing systems: a review of existing models. IJPD (2010)

    Google Scholar 

  24. Nourelfath, M., Nahas, N., Ait‐Kadi, D.: Optimal design of series production lines with unreliable machines and finite buffers. J. Qual. Maintenance Eng. 2, 121–138 (2005). https://doi.org/10.1108/13552510510601348

  25. Liu, Y., Li, J.: Split and merge production systems: performance analysis and structural properties. IIE Trans. 6, 422–434 (2010). https://doi.org/10.1080/07408170903394348

  26. Spinellis, D.D., Papadopoulos, C.T.: A simulated annealing approach for buffer allocation in reliable production lines. Annals of Operations Research (2000)

    Google Scholar 

  27. Zhang, M., Matta, A.: Models and algorithms for throughput improvement problem of serial production lines via downtime reduction. IISE Trans. 11, 1189–1203 (2020). https://doi.org/10.1080/24725854.2019.1700431

  28. Filho, M.G., Utiyama, M.H.R.: Comparing the effect of different strategies of continuous improvement programmes on repair time to reduce lead time. Int. J. Adv. Manuf. Technol. 87(1–4), 315–327 (2016). https://doi.org/10.1007/s00170-016-8483-x

    Article  Google Scholar 

  29. Godinho Filho, M., Utiyama, M.H.R.: Comparing different strategies for the allocation of improvement programmes in a flow shop environment. Int. J. Adv. Manuf. Technol. 77(5–8), 1365–1385 (2014). https://doi.org/10.1007/s00170-014-6553-5

    Article  Google Scholar 

  30. Jasiulewicz-Kaczmarek, M., Bartkowiak, T.: Improving the performance of a filling line based on simulation. IOP Conf. Ser.: Mater. Sci. Eng. 145, 042024 (2016). https://doi.org/10.1088/1757-899X/145/4/042024

  31. Harrington, B.:Breakdowns Happen. How to Factor Downtime into your Simulation. Whitepaper (2014)

    Google Scholar 

  32. Dagkakis, G., Heavey, C., Robin, S., Perrin, J.: ManPy: an open-source layer of DES manufacturing objects implemented in simPy. IEEE, Piscataway, NJ (2013)

    Google Scholar 

  33. Sutton, R.S., McAllester, D., Singh, S., Mansour, Y.: Policy Gradient Methods for Reinforcement Learning with Function Approximation. MIT Press, Cambridge (1999)

    Google Scholar 

  34. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal Policy Optimization Algorithms (2017). https://arxiv.org/pdf/1707.06347

Download references

Acknowledgment

The authors would like to thank the German Research Foundation DFG for funding this work within the Cluster of Excellence “Internet of Production” (Project ID: 390621612).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Maetschke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schuh, G., Gützlaff, A., Schmidhuber, M., Maetschke, J., Barkhausen, M., Sivanesan, N. (2021). Identification of Superior Improvement Trajectories for Production Lines via Simulation-Based Optimization with Reinforcement Learning. In: Dolgui, A., Bernard, A., Lemoine, D., von Cieminski, G., Romero, D. (eds) Advances in Production Management Systems. Artificial Intelligence for Sustainable and Resilient Production Systems. APMS 2021. IFIP Advances in Information and Communication Technology, vol 634. Springer, Cham. https://doi.org/10.1007/978-3-030-85914-5_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85914-5_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85913-8

  • Online ISBN: 978-3-030-85914-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics