Projection Grid Cues: An Efficient Way to Perceive the Depths of Underground Objects in Augmented Reality | SpringerLink
Skip to main content

Projection Grid Cues: An Efficient Way to Perceive the Depths of Underground Objects in Augmented Reality

  • Conference paper
  • First Online:
Human-Computer Interaction – INTERACT 2021 (INTERACT 2021)

Abstract

Augmented Reality is increasingly used for visualizing underground networks. However, standard visual cues for depth perception have never been thoroughly evaluated via user experiments in a context involving physical occlusions (e.g., ground) of virtual objects (e.g., elements of a buried network). We therefore evaluate the benefits and drawbacks of two techniques based on combinations of two well-known depth cues: grid and shadow anchors. More specifically, we explore how each combination contributes to positioning and depth perception. We demonstrate that when using shadow anchors alone or shadow anchors combined with a grid, users generate 2.7 times fewer errors and have a 2.5 times lower perceived workload than when only a grid or no visual cues are used. Our investigation shows that these two techniques are effective for visualizing underground objects. We also recommend the use of one technique or another depending on the situation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 16015
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 20019
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.hitl.washington.edu/artoolkit/.

  2. 2.

    https://rstudio.com/, Version 1.2.1335 on Windows.

References

  1. Ahn, J., Ahn, E., Min, S., Choi, H., Kim, H., Kim, G.J.: Size perception of augmented objects by different AR displays. In: Stephanidis, C. (ed.) HCII 2019. CCIS, vol. 1033, pp. 337–344. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23528-4_46

    Chapter  Google Scholar 

  2. Avery, B., Sandor, C., Thomas, B.H.: In: Improving spatial perception for augmented reality X-ray vision, pp. 79–82. IEEE (2009). https://doi.org/10.1109/VR.2009.4811002

  3. Becher, C., Bottecchia, S., Desbarats, P.: Projection Grid Cues: une manière efficace de percevoir les profondeurs des objets souterrains en Réalité Augmentée. In: IHM 2020–2021 (To appear) (2021). https://doi.org/10.1145/3450522.3451247

  4. Chen, J., Granier, X., Lin, N., Peng, Q.: In: On-line visualization of underground structures using context features, pp. 167–170. ACM, New York (2010). https://doi.org/10.1145/1889863.1889898

  5. Cöster, J.: The effects of shadows on depth perception in augmented reality on a mobile device. Technical report (2019)

    Google Scholar 

  6. Cutting, J.E.: How the eye measures reality and virtual reality. Behav. Res. Methods Instrum. Comput. 29(1), 27–36 (1997). https://doi.org/10.3758/BF03200563

    Article  Google Scholar 

  7. De Paolis, L.T., Luca, V.D.: Augmented visualization with depth perception cues to improve the surgeon’s performance in minimally invasive surgery. Med. Biol. Eng. Comput. 57(5), 995–1013 (2018). https://doi.org/10.1007/s11517-018-1929-6

    Article  Google Scholar 

  8. Dey, A., Cunningham, A., Sandor, C.: In: Evaluating depth perception of photorealistic mixed reality visualizations for occluded objects in outdoor environments, vol. VRST 10, p. 211. ACM Press, New York (2010). https://doi.org/10.1145/1889863.1889911

  9. Eren, M.T., Balcisoy, S.: Evaluation of X-ray visualization techniques for vertical depth judgments in underground exploration. Vis. Comput. 34(3), 405–416 (2017). https://doi.org/10.1007/s00371-016-1346-5

  10. Fukiage, T., Oishi, T., Ikeuchi, K.: In: Reduction of contradictory partial occlusion in mixed reality by using characteristics of transparency perception, pp. 129–139. IEEE (2012). https://doi.org/10.1109/ISMAR.2012.6402549

  11. Gao, Y., Peillard, E., Normand, J.M., Moreau, G., Liu, Y., Wang, Y.: Influence of virtual objects shadows and lighting coherence on distance perception in optical see-through augmented reality. J. Soc. Inf. Disp. 28(2), 117–135 (2019). https://doi.org/10.1002/jsid.832

    Article  Google Scholar 

  12. Gross, H.: Handbook of Optical Systems, vol. 1. Wiley-VCH (September 2005). https://doi.org/10.1002/9783527699223

  13. Heinrich, F., Bornemann, K., Lawonn, K., Hansen, C.: In: Depth perception in projective augmented reality: an evaluation of advanced visualization techniques, pp. 1–11. ACM, New York (2019). https://doi.org/10.1145/3359996.3364245

  14. Junghanns, S., Schall, G., Schmalstieg, D.: In: VIDENTE-What lies beneath?, A new approach of locating and identifying buried utility assets on site, vol. 08), p. showcase. p. 28, Salzburg, Austria (2008)

    Google Scholar 

  15. Kalkofen, D., Tatzgern, M., Schmalstieg, D.: Explosion diagrams in augmented reality. In: 2009 IEEE Virtual Reality Conference, pp. 71–78. IEEE (March 2009). https://doi.org/10.1109/VR.2009.4811001

  16. Kalkofen, D., Mendez, E., Schmalstieg, D.: Interactive focus and context visualization for augmented reality. In: 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 1–10. IEEE (November 2007). https://doi.org/10.1109/ISMAR.2007.4538846

  17. Kalkofen, D., Veas, E., Zollmann, S., Steinberger, M., Schmalstieg, D.: In: Adaptive ghosted views for augmented reality, pp. 1–9. IEEE (2013). https://doi.org/10.1109/ISMAR.2013.6671758

  18. Livingston, M., Ai, Zhuming, Swan, J., Smallman, H.: In: Indoor vs. Outdoor depth perception for mobile augmented reality, pp. 55–62. IEEE (2009). https://doi.org/10.1109/VR.2009.4810999

  19. Luboschik, M., Berger, P., Staadt, O.: In: On spatial perception issues in augmented reality based immersive analytics, vol. 16, pp. 47–53. ACM Press, New York (2016). https://doi.org/10.1145/3009939.3009947

  20. Mendez, E., Schmalstieg, D.: In: Importance masks for revealing occluded objects in augmented reality, vol. VRST 2009, p. 247. ACM Press, New York (2009). https://doi.org/10.1145/1643928.1643988

  21. Milgram, P., Takemura, H., Utsumi, A., Kishino, F.: Augmented reality: a class of displays on the reality-virtuality continuum. In: Das, H. (ed.) Telemanipulator and Telepresence Technologies. SPIE (1995). https://doi.org/10.1117/12.197321

  22. Montero, A., Zarraonandia, T., Diaz, P., Aedo, I.: Designing and implementing interactive and realistic augmented reality experiences. Univ. Access Inf. Soc. 18(1), 49–61 (2017)

    Article  Google Scholar 

  23. Otsuki, M., Kamioka, Y., Kitai, Y., Kanzaki, M., Kuzuoka, H., Uchiyama, H.: Please show me inside. In: SIGGRAPH Asia 2015 Emerging Technologies on - SA 2015, pp. 1–3. ACM Press, New York (2015). https://doi.org/10.1145/2818466.2818469

  24. Rolim, C., Schmalstieg, D., Kalkofen, D., Teichrieb, V.: Design guidelines for generating augmented reality instructions. In: IEEE International Symposium on Mixed and Augmented Reality, pp. 120–123. IEEE (September 2015). https://doi.org/10.1109/ISMAR.2015.36

  25. Rosales, C.S., et al.: In: Distance judgments to on- and off-ground objects in augmented reality, pp. 237–243. IEEE (2019). https://doi.org/10.1109/VR.2019.8798095

  26. Roxas, M., Hori, T., Fukiage, T., Okamoto, Y., Oishi, T.: In: Occlusion handling using semantic segmentation and visibility-based rendering for mixed reality, vol. VRST 2018, pp. 1–8. ACM Press, New York (2018). https://doi.org/10.1145/3281505.3281546

  27. Sandor, C., Cunningham, A., Dey, A., Mattila, V.V.: In: An Augmented Reality X-Ray system based on visual saliency, pp. 27–36. IEEE (2010). https://doi.org/10.1109/ISMAR.2010.5643547

  28. Schall, G., et al.: Handheld augmented reality for underground infrastructure visualization. Pers. Ubiquit. Comput. 13(4), 281–291 (2008). https://doi.org/10.1007/s00779-008-0204-5

    Article  MathSciNet  Google Scholar 

  29. Singh, G., Ellis, S.R., Swan, J.E.: The effect of focal distance, age, and brightness on near-field augmented reality depth matching. IEEE Trans. Vis. Comput. Graph. 26(2), 1385–1398 (2020). https://doi.org/10.1109/tvcg.2018.2869729

    Article  Google Scholar 

  30. Skinner, P., Ventura, J., Zollmann, S.: Indirect augmented reality browser for GIS Data. In: Adjunct Proceedings - 2018 IEEE International Symposium on Mixed and Augmented Reality, ISMAR-Adjunct 2018, pp. 145–150. Institute of Electrical and Electronics Engineers Inc. (July 2018). https://doi.org/10.1109/ISMAR-Adjunct.2018.00054

  31. Sugano, N., Kato, H., Tachibana, K.: The effects of shadow representation of virtual objects in augmented reality. Presented at the (2003)

    Google Scholar 

  32. Team, R.C.: R Core Team. R: A language and environment for statistical computing. Foundation for Statistical Computing (2013)

    Google Scholar 

  33. Vaziri, K., Liu, P., Aseeri, S., Interrante, V.: In: Impact of visual and experiential realism on distance perception in VR using a custom video see-through system, vol. 17, pp. 1–8. ACM Press, New York (2017). https://doi.org/10.1145/3119881.3119892

  34. Ventura, J., Zollmann, S., Stannus, S., Billinghurst, M., Driancourt, R.: In: Understanding AR inside and out – Part Two, pp. 1–243. ACM, New York (2020). https://doi.org/10.1145/3388769.3407543

  35. Wang, W., et al.: Holo3DGIS: leveraging Microsoft Hololens in 3D geographic information. ISPRS Int. J. Geo-Inf. 7(2), 60 (2018). https://doi.org/10.3390/ijgi7020060

  36. Ware, C.: Information Visualization: Perception for Design: Second Edition. Elsevier (2004). https://doi.org/10.1016/B978-1-55860-819-1.X5000-6

  37. Wilson, A., Hua, H.: Design and prototype of an augmented reality display with per-pixel mutual occlusion capability. Opt. Express 25(24), 30539 (2017). https://doi.org/10.1364/OE.25.030539

    Article  Google Scholar 

  38. Wither, J., Hollerer, T.: In: pictorial depth cues for outdoor augmented reality, vol. ISWC 2005, pp. 92–99. IEEE (2005). https://doi.org/10.1109/ISWC.2005.41

  39. Woldegiorgis, B.H., Lin, C.J., Liang, W.Z.: Impact of parallax and interpupillary distance on size judgment performances of virtual objects in stereoscopic displays. Ergonomics 62(1), 76–87 (2018). https://doi.org/10.1080/00140139.2018.1526328

    Article  Google Scholar 

  40. Zhu, J., Pan, Z., Sun, C., Chen, W.: Handling occlusions in video-based augmented reality using depth information. Comput. Animation Virtual Worlds 21(5), 509–521 (2009). https://doi.org/10.1002/cav.326

    Article  Google Scholar 

  41. Zollmann, S., Grasset, R., Langlotz, T., Lo, W.H., Mori, S., Regenbrecht, H.: Visualization techniques in augmented reality: a taxonomy, methods and patterns. IEEE Trans. Vis. Comput. Graph. (2020). https://doi.org/10.1109/TVCG.2020.2986247

    Article  Google Scholar 

  42. Zollmann, S., Grasset, R., Reitmayr, G., Langlotz, T.: In: Image-based X-ray visualization techniques for spatial understanding in outdoor augmented reality, vol. 14, pp. 194–203. ACM Press, New York (2014). https://doi.org/10.1145/2686612.2686642

  43. Zollmann, S., Hoppe, C., Kluckner, S., Poglitsch, C., Bischof, H., Reitmayr, G.: Augmented reality for construction site monitoring and documentation. Proc. IEEE 102(2), 137–154 (2014). https://doi.org/10.1109/JPROC.2013.2294314

    Article  Google Scholar 

  44. Zollmann, S., Hoppe, C., Langlotz, T., Reitmayr, G.: FlyAR: augmented reality supported micro aerial vehicle navigation. IEEE Trans. Vis. Comput. Graph. 20(4), 560–568 (2014). https://doi.org/10.1109/TVCG.2014.24

    Article  Google Scholar 

  45. Zollmann, S., Kalkofen, D., Mendez, E., Reitmayr, G.: In: Image-based ghostings for single layer occlusions in augmented reality, pp. 19–26. IEEE (2010). https://doi.org/10.1109/ISMAR.2010.5643546

  46. Zollmann, S., Schall, G., Junghanns, S., Reitmayr, G.: Comprehensible and interactive visualizations of GIS Data in augmented reality. In: Bebis, G., et al. (eds.) ISVC 2012. LNCS, vol. 7431, pp. 675–685. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33179-4_64

    Chapter  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support of ANRT (French National Association for Research and Technology). We also warmly thank Professor Laurence Nigay for her help during the shepherding process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cindy Becher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Becher, C., Bottecchia, S., Desbarats, P. (2021). Projection Grid Cues: An Efficient Way to Perceive the Depths of Underground Objects in Augmented Reality. In: Ardito, C., et al. Human-Computer Interaction – INTERACT 2021. INTERACT 2021. Lecture Notes in Computer Science(), vol 12932. Springer, Cham. https://doi.org/10.1007/978-3-030-85623-6_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85623-6_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85622-9

  • Online ISBN: 978-3-030-85623-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics