Abstract
As citizen orientation and public value creation are more in the focus, how do we set priorities for the upcoming digital transformation in the public sector? Distinguishing data science and process science as paradigms that promote different directions for the transformation, this research seeks to improve the transparency of how IT-related decisions are directing projects and resources and thus promoting directions of public value production and delivery. Digital government research along this line may help constituents, IT experts and other stakeholders to engage in the needed discourse about the (not) wanted future of government performance and related technology usage.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alford, J., Yates, S.: Mapping public value processes. Int. J. Public Sector Manage. 27(4), 334–352 (2014)
BearingPoint: The three waves of digitalization. https://www.bearingpoint.com/en-fi/blog/three-waves-of-digitalization. Accessed 05 Mar 2021
Cao, L.: Data science: a comprehensive overview. ACM Comput. Surv. (CSUR) 50(3), 1–42 (2017)
Deloitte: Digital Government Transformation. https://www2.deloitte.com/global/en/pages/public-sector/articles/digital-government-transformation.html. Accessed 05 Mar 2021
Dennis, A.R.: Relevance in information systems research. Commun. Assoc. Inf. Syst. 6, Article 10 (2001)
Duneja, R., Lasku, A., Pichai, H., Kilefors, P.: Digitalization of government services (2018). https://www.adlittle.com/en/Government_Digitalization. Accessed 21 Feb 2021
Eggers, W., Bellman, J.: The Journey to Government’s Digital Transformation. Deloitte University Press, UK (2015)
Express Computer: Digitalization wave to transform CIOs role completely: Gartner. https://www.expresscomputer.in/news/digitalization-wave-to-transform-cios-role-completely-gartner/22478/. Accessed 21 Feb 2021
Gal, A., Senderovich, A.: Process minding: closing the big data gap. In: Fahland, D., Ghidini, C., Becker, J., Dumas, M. (eds.) BPM 2020. LNCS, vol. 12168, pp. 3–16. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58666-9_1
Gong, Y., Yang, J., Shi, X.: Towards a comprehensive understanding of digital transformation in government: analysis of flexibility and enterprise architecture. Gov. Inf. Q. 37(3), 101487 (2020)
Grisold, T., Wurm, B., Mendling, J., Vom Brocke, J.: Using process mining to support theorizing about change in organizations. In: Proceedings 53rd HICSS. IEEE (2020)
Hassan, N.R., Mingers, J.: Reinterpreting the Kuhnian paradigm in information systems. J. Assoc. Inf. Syst. 19(7), 568–599 (2018)
Kirchmer, M., Franz, P., Gusain, R.: From strategy to process improvement portfolios and value realization. In: Shishkov, B. (ed.) BMSD 2018. LNBIP, vol. 319, pp. 32–55. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94214-8_3
KPMG: Enabling the Digital Enterprise: A CIO Checklist for Digital Transformation. https://assets.kpmg/content/dam/kpmg/pdf/2016/04/digital-enterprise-cio-checklist.pdf. Accessed 21 Feb 2021
Kuhn, T.: The Structure of Scientific Revolutions, 2nd edn. University of Chicago Press, Chicago (1970)
Lee, J.K., Park, J., Gregor, Sh., Yoon, V.: Axiomatic theories and improving the relevance of information systems research. Inf. Syst. Res. (2021, published online in Articles in Advance 01 Feb 2021).
Lindgren, I., Madsen, C.Ø., Hofmann, S., Melin, U.: Close encounters of the digital kind: a research agenda for the digitalization of public services. Gov. Inf. Q. 36(3), 427–436 (2019)
Lynch, C.: Jim Gray’s fourth paradigm and the construction of the scientific record. In: Hey, T., Tansley, S., Tolle, K. (eds.) The Fourth Paradigm: Data-intensive Scientific Discovery, pp. 177–184. Microsoft Research, Redmond (2009)
Majchrzak, A., Markus, M.L., Wareham, J.: Designing for digital transformation: lessons for information systems research from the study of ICT and societal challenges. Manage. Inf. Syst. Q. 40(2), 267–277 (2016)
Mendling, J.: From scientific process management to process science: towards an empirical research agenda for business process management. In: Hochreiner, Ch., Schulte, S. (eds.) Proceedings 8th ZEUS Workshop, Vienna, Austria, pp. 1–4 (2016)
Mergel, I., Edelmann, N., Haug, N.: Defining digital transformation: results from expert interviews. Gov. Inf. Q. 36(4), 101385 (2019)
Mergel, I., Kattel, R., Lember, V., McBride, K.: Citizen-oriented digital transformation in the public sector. In: Proceedings of the 19th Annual International Conference on Digital Government Research: Governance in the Data Age, pp. 1–3 (2018)
Panagiotopoulos, P., Klievink, B., Cordella, A.: Public value creation in digital government. Gov. Inf. Q. 36(4), 101421 (2019)
Pang, M.-S., Lee, G., DeLone, W.H.: IT resources, organizational capabilities, and value creation in public-sector organizations: a public-value management perspective. J. Inf. Technol. 29(3), 187–205 (2014)
Press, G.: A Very Short History of Data Science. Forbes Technology (2013). http://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/. Accessed 11 Feb 2021
Ross, J.W.: Don’t confuse digital with digitization. MIT Sloan Manage. Rev. (2017). https://sloanreview.mit.edu/article/dont-confuse-digital-with-digitization/
Rowe, F.: Being critical is good, but better with philosophy! From digital transformation and values to the future of IS research. Eur. J. Inf. Syst. 27(3), 380–393 (2018)
Scholl, H.J.: E-government: a special case of ICT-enabled business process change. In: Proceedings 36th Hawaii International Conference on System Sciences. IEEE (2003)
Tangi, L., Janssen, M., Benedetti, M., Noci, G.: Barriers and drivers of digital transformation in public organizations: results from a survey in the Netherlands. In: VialePereira, G., et al. (eds.) EGOV 2020. LNCS, vol. 12219, pp. 42–56. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57599-1_4
Twizeyimana, J.D., Andersson, A.: The public value of E-Government–a literature review. Gov. Inf. Q. 36(2), 167–178 (2019)
Aalst, W.M.P.: Data scientist: the engineer of the future. In: Mertins, K., Bénaben, F., Poler, R., Bourrières, J.-P. (eds.) Enterprise Interoperability VI. PIC, vol. 7, pp. 13–26. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04948-9_2
Van der Aalst, W.: Process Mining: Data Science in Action, 2nd edn. Springer, Berlin (2016)
Van der Aalst, W., Damiani, E.: Processes meet big data: connecting data science with process science. IEEE Trans. Serv. Comput. 8(6), 810–819 (2015)
Fahland, D., Ghidini, C., Becker, J., Dumas, M. (eds.): BPM 2020. LNCS, vol. 12168. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58666-9
Vom Brocke, J., Schmid, A. M., Simons, A., Safrudin, N.: IT-enabled organizational transformation: a structured literature review. Bus. Process Manage. J. (2020, ahead-of-print). https://doi.org/10.1108/BPMJ-10-2019-0423
Wessel, L., Baiyere, A., Ologeanu-Taddei, R., Cha, J., Blegind Jensen, T.: Unpacking the difference between digital transformation and IT-enabled organizational transformation. J. Assoc. Inf. Syst. 22(1), Article 6 (2021)
Ylinen, M., Pekkola, S.: A process model for public sector IT management to answer the needs of digital transformation. In: Proceedings of the 52nd HICSS. IEEE (2019)
Zhang, J., Luna-Reyes, L.F., Mellouli, S.: Transformational digital government. Gov. Inf. Q. 4(31), 503–505 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 IFIP International Federation for Information Processing
About this paper
Cite this paper
Klischewski, R. (2021). Data Science or Process Science? How to Promote the Next Digital Transformation in the Public Sector. In: Scholl, H.J., Gil-Garcia, J.R., Janssen, M., Kalampokis, E., Lindgren, I., Rodríguez Bolívar, M.P. (eds) Electronic Government. EGOV 2021. Lecture Notes in Computer Science(), vol 12850. Springer, Cham. https://doi.org/10.1007/978-3-030-84789-0_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-84789-0_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-84788-3
Online ISBN: 978-3-030-84789-0
eBook Packages: Computer ScienceComputer Science (R0)