A Neural Terminal Sliding Mode Control for Tracking Control of Robotic Manipulators in Uncertain Dynamical Environments | SpringerLink
Skip to main content

A Neural Terminal Sliding Mode Control for Tracking Control of Robotic Manipulators in Uncertain Dynamical Environments

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2021)

Abstract

This article investigates a control algorithm for trajectory tracking control of robot manipulators in uncertain dynamical environments. To deal with chattering behavior that always still exists in the conventional sliding mode control, to remove the requirement about a dynamic model of the uncertain robot system, and prior knowledge of the unknown function such as its upper boundary, the proposed solution is to develop a control method that combines the advantages of both terminal sliding mode control and radial basis function neural network. Furthermore, the proposed controller’s fast stabilization and convergence are also significantly improved by using a novel adaptive fast reaching control law. Hence, the proposed controller’s performance expectations are always guaranteed such as high tracking accuracy, fast stabilization, chattering reduction, fast convergence, and robustness to uncertain dynamical environments. Especially, the proposed controller can operate without the robot’s dynamic model. Both theoretical investigations based on Lyapunov stability theory and computer simulation using MATLAB/Simulink are presented to confirm the effectiveness of the proposed control solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shtessel, Y., Edwards, C., Fridman, L., Levant, A.: Sliding Mode Control and Observation. Springer, New York (2014). https://doi.org/10.1007/978-0-8176-4893-0

    Book  Google Scholar 

  2. Islam, S., Liu, X.P.: Robust sliding mode control for robot manipulators. IEEE Trans. Industr. Electron. 58(6), 2444–2453 (2010)

    Article  Google Scholar 

  3. Baek, J., Jin, M., Han, S.: A new adaptive sliding-mode control scheme for application to robot manipulators. IEEE Trans. Industr. Electron. 63(6), 3628–3637 (2016)

    Article  Google Scholar 

  4. Llama, M.A., Kelly, R., Santibañez, V.: Stable computed-torque control of robot manipulators via fuzzy self-tuning. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 30(1), 143–150 (2000)

    Google Scholar 

  5. Hernández-Guzmán, V.M., Orrante-Sakanassi, J.: Global PID control of robot manipulators equipped with PMSMs. Asian J. Control 20(1), 236–249 (2018)

    Article  MathSciNet  Google Scholar 

  6. Wang, H.: Adaptive control of robot manipulators with uncertain kinematics and dynamics. IEEE Trans. Autom. Control 62(2), 948–954 (2016)

    Article  MathSciNet  Google Scholar 

  7. Sun, T., Pei, H., Pan, Y., Zhou, H., Zhang, C.: Neural network-based sliding mode adaptive control for robot manipulators. Neurocomputing 74(14–15), 2377–2384 (2011)

    Article  Google Scholar 

  8. Truong, T.N., Kang, H.-J., Le, T.D.: Adaptive neural sliding mode control for 3-DOF planar parallel manipulators. In: Proceedings of the 2019 3rd International Symposium on Computer Science and Intelligent Control, pp. 1–6 (2019)

    Google Scholar 

  9. Truong, T.N., Vo, A.T., Kang, H.-J.: A backstepping global fast terminal sliding mode control for trajectory tracking control of industrial robotic manipulators. IEEE Access 9, 31921–31931 (2021)

    Article  Google Scholar 

  10. Vo, A.T., Truong, T.N., Kang, H.J.: A novel tracking control algorithm with finite-time disturbance observer for a class of second-order nonlinear systems and its applications. IEEE Access 9, 31373–31389 (2021)

    Article  Google Scholar 

  11. Van, M., Ceglarek, D.: Robust fault tolerant control of robot manipulators with global fixed-time convergence. J. Franklin Inst. 358(1), 699–722 (2021)

    Article  MathSciNet  Google Scholar 

  12. Vo, A.T., Truong, T.N., Kang, H.-J.: A novel fixed-time control algorithm for trajectory tracking control of uncertain magnetic levitation systems. IEEE Access 9, 47698–47712 (2021)

    Article  Google Scholar 

  13. Vo, A.T., Kang, H.-J., Truong, T.N.: A fast terminal sliding mode control strategy for trajectory tracking control of robotic manipulators. In: International Conference on Intelligent Computing, pp. 177–189 (2020)

    Google Scholar 

  14. Wang, Y., Zhu, K., Chen, B., Jin, M.: Model-free continuous nonsingular fast terminal sliding mode control for cable-driven manipulators. ISA Trans. 98, 483–495 (2020)

    Article  Google Scholar 

  15. Van, M., Mavrovouniotis, M., Ge, S.S.: An adaptive backstepping nonsingular fast terminal sliding mode control for robust fault tolerant control of robot manipulators. IEEE Trans. Syst. Man Cybern. Syst. 49(7), 1448–1458 (2018)

    Article  Google Scholar 

  16. Truong, T.N., Kang, H.-J., Vo, A.T.: An active disturbance rejection control method for robot manipulators. In: International Conference on Intelligent Computing, pp. 190–201 (2020)

    Google Scholar 

  17. Truong, T.N., Vo, A.T., Kang, H.-J.: Implementation of an adaptive neural terminal sliding mode for tracking control of magnetic levitation systems. IEEE Access 8, 206931–206941 (2020)

    Article  Google Scholar 

  18. Ma, Z., Sun, G.: Dual terminal sliding mode control design for rigid robotic manipulator. J. Franklin Inst. 355(18), 9127–9149 (2018)

    Article  MathSciNet  Google Scholar 

  19. Vo, A.T., Kang, H.: Neural integral non-singular fast terminal synchronous sliding mode control for uncertain 3-DOF parallel robotic manipulators. IEEE Access 1 (2020)

    Google Scholar 

  20. Vo, A.T., Kang, H.-J.: An adaptive neural non-singular fast-terminal sliding-mode control for industrial robotic manipulators. Appl. Sci. 8(12), 2562 (2018)

    Article  Google Scholar 

  21. Rani, K., Kumar, N.: Intelligent controller for hybrid force and position control of robot manipulators using RBF neural network. Int. J. Dyn. Control 7(2), 767–775 (2019)

    Article  MathSciNet  Google Scholar 

  22. Kumar, N., et al.: Finite time control scheme for robot manipulators using fast terminal sliding mode control and RBFNN. Int. J. Dyn. Control 7(2), 758–766 (2019)

    Article  MathSciNet  Google Scholar 

  23. Craig, J.J.: Introduction to Robotics: Mechanics and Control, 3rd edn. Pearson Education India, Noida (2009)

    Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2019R1D1A3A03103528).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee-Jun Kang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen Truong, T., Tuan Vo, A., Kang, HJ., Le, T.D. (2021). A Neural Terminal Sliding Mode Control for Tracking Control of Robotic Manipulators in Uncertain Dynamical Environments. In: Huang, DS., Jo, KH., Li, J., Gribova, V., Hussain, A. (eds) Intelligent Computing Theories and Application. ICIC 2021. Lecture Notes in Computer Science(), vol 12837. Springer, Cham. https://doi.org/10.1007/978-3-030-84529-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84529-2_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84528-5

  • Online ISBN: 978-3-030-84529-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics