Abstract
This article investigates a control algorithm for trajectory tracking control of robot manipulators in uncertain dynamical environments. To deal with chattering behavior that always still exists in the conventional sliding mode control, to remove the requirement about a dynamic model of the uncertain robot system, and prior knowledge of the unknown function such as its upper boundary, the proposed solution is to develop a control method that combines the advantages of both terminal sliding mode control and radial basis function neural network. Furthermore, the proposed controller’s fast stabilization and convergence are also significantly improved by using a novel adaptive fast reaching control law. Hence, the proposed controller’s performance expectations are always guaranteed such as high tracking accuracy, fast stabilization, chattering reduction, fast convergence, and robustness to uncertain dynamical environments. Especially, the proposed controller can operate without the robot’s dynamic model. Both theoretical investigations based on Lyapunov stability theory and computer simulation using MATLAB/Simulink are presented to confirm the effectiveness of the proposed control solution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Shtessel, Y., Edwards, C., Fridman, L., Levant, A.: Sliding Mode Control and Observation. Springer, New York (2014). https://doi.org/10.1007/978-0-8176-4893-0
Islam, S., Liu, X.P.: Robust sliding mode control for robot manipulators. IEEE Trans. Industr. Electron. 58(6), 2444–2453 (2010)
Baek, J., Jin, M., Han, S.: A new adaptive sliding-mode control scheme for application to robot manipulators. IEEE Trans. Industr. Electron. 63(6), 3628–3637 (2016)
Llama, M.A., Kelly, R., Santibañez, V.: Stable computed-torque control of robot manipulators via fuzzy self-tuning. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 30(1), 143–150 (2000)
Hernández-Guzmán, V.M., Orrante-Sakanassi, J.: Global PID control of robot manipulators equipped with PMSMs. Asian J. Control 20(1), 236–249 (2018)
Wang, H.: Adaptive control of robot manipulators with uncertain kinematics and dynamics. IEEE Trans. Autom. Control 62(2), 948–954 (2016)
Sun, T., Pei, H., Pan, Y., Zhou, H., Zhang, C.: Neural network-based sliding mode adaptive control for robot manipulators. Neurocomputing 74(14–15), 2377–2384 (2011)
Truong, T.N., Kang, H.-J., Le, T.D.: Adaptive neural sliding mode control for 3-DOF planar parallel manipulators. In: Proceedings of the 2019 3rd International Symposium on Computer Science and Intelligent Control, pp. 1–6 (2019)
Truong, T.N., Vo, A.T., Kang, H.-J.: A backstepping global fast terminal sliding mode control for trajectory tracking control of industrial robotic manipulators. IEEE Access 9, 31921–31931 (2021)
Vo, A.T., Truong, T.N., Kang, H.J.: A novel tracking control algorithm with finite-time disturbance observer for a class of second-order nonlinear systems and its applications. IEEE Access 9, 31373–31389 (2021)
Van, M., Ceglarek, D.: Robust fault tolerant control of robot manipulators with global fixed-time convergence. J. Franklin Inst. 358(1), 699–722 (2021)
Vo, A.T., Truong, T.N., Kang, H.-J.: A novel fixed-time control algorithm for trajectory tracking control of uncertain magnetic levitation systems. IEEE Access 9, 47698–47712 (2021)
Vo, A.T., Kang, H.-J., Truong, T.N.: A fast terminal sliding mode control strategy for trajectory tracking control of robotic manipulators. In: International Conference on Intelligent Computing, pp. 177–189 (2020)
Wang, Y., Zhu, K., Chen, B., Jin, M.: Model-free continuous nonsingular fast terminal sliding mode control for cable-driven manipulators. ISA Trans. 98, 483–495 (2020)
Van, M., Mavrovouniotis, M., Ge, S.S.: An adaptive backstepping nonsingular fast terminal sliding mode control for robust fault tolerant control of robot manipulators. IEEE Trans. Syst. Man Cybern. Syst. 49(7), 1448–1458 (2018)
Truong, T.N., Kang, H.-J., Vo, A.T.: An active disturbance rejection control method for robot manipulators. In: International Conference on Intelligent Computing, pp. 190–201 (2020)
Truong, T.N., Vo, A.T., Kang, H.-J.: Implementation of an adaptive neural terminal sliding mode for tracking control of magnetic levitation systems. IEEE Access 8, 206931–206941 (2020)
Ma, Z., Sun, G.: Dual terminal sliding mode control design for rigid robotic manipulator. J. Franklin Inst. 355(18), 9127–9149 (2018)
Vo, A.T., Kang, H.: Neural integral non-singular fast terminal synchronous sliding mode control for uncertain 3-DOF parallel robotic manipulators. IEEE Access 1 (2020)
Vo, A.T., Kang, H.-J.: An adaptive neural non-singular fast-terminal sliding-mode control for industrial robotic manipulators. Appl. Sci. 8(12), 2562 (2018)
Rani, K., Kumar, N.: Intelligent controller for hybrid force and position control of robot manipulators using RBF neural network. Int. J. Dyn. Control 7(2), 767–775 (2019)
Kumar, N., et al.: Finite time control scheme for robot manipulators using fast terminal sliding mode control and RBFNN. Int. J. Dyn. Control 7(2), 758–766 (2019)
Craig, J.J.: Introduction to Robotics: Mechanics and Control, 3rd edn. Pearson Education India, Noida (2009)
Acknowledgements
This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2019R1D1A3A03103528).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Nguyen Truong, T., Tuan Vo, A., Kang, HJ., Le, T.D. (2021). A Neural Terminal Sliding Mode Control for Tracking Control of Robotic Manipulators in Uncertain Dynamical Environments. In: Huang, DS., Jo, KH., Li, J., Gribova, V., Hussain, A. (eds) Intelligent Computing Theories and Application. ICIC 2021. Lecture Notes in Computer Science(), vol 12837. Springer, Cham. https://doi.org/10.1007/978-3-030-84529-2_18
Download citation
DOI: https://doi.org/10.1007/978-3-030-84529-2_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-84528-5
Online ISBN: 978-3-030-84529-2
eBook Packages: Computer ScienceComputer Science (R0)