Importance of Variables in Gearbox Diagnostics Using Random Forests and Ensemble Credits | SpringerLink
Skip to main content

Importance of Variables in Gearbox Diagnostics Using Random Forests and Ensemble Credits

  • Conference paper
  • First Online:
Computer Information Systems and Industrial Management (CISIM 2021)

Abstract

We consider a multivariate data matrix of size \(n \times d = 2183 \times 15\), where \(n=2183\) is the number of time segments recorded from vibration signals of two gearboxes, and \(d=15\) is the number of variables (traits) characterizing these segments. To learn about the role played by each of the 15 variables in the gearbox diagnostics, we use the Random Forest (RF) methodology with its ‘Variables Importance Plot’ (VIP) algorithm, which yields a kind of ranking of the variables with regard of their importance in the performed diagnostics. This ranking is different in various runs of the RF. We propose to use at this stage an additional module performing a specific ensemble learning yielding credits scores for each variable. It shows clearly the top most important variables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9723
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 12154
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bartelmus, W., Zimroz, R.: A new feature for monitoring the condition of gearboxes in non-stationary operating systems. Mech. Syst. Signal Process. 23(5), 1528–1534 (2009)

    Article  Google Scholar 

  2. Bartkowiak, A., Zimroz, R.: Dimensionality reduction via variables selection - linear and nonlinear approaches with application to vibration-based condition monitoring of planetary gearbox. Appl. Accoustics 77, 169–177 (2014)

    Article  Google Scholar 

  3. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regression Trees. Taylor & Francis (1984)

    Google Scholar 

  4. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  5. Breiman, L.: Statistical modeling: the two cultures. Stat. Sci. 16(3), 199–231 (2001)

    Article  MathSciNet  Google Scholar 

  6. Breiman, L., Cutler, A.: Random Forest Manual v. 4.0. Technical Report UC Berkeley (2003)

    Google Scholar 

  7. Burduk, R., Baczyńska, P.: Ensemble of classifiers with modification of confidence values. In: Saeed, K., Homenda, W. (eds.) CISIM 2016. LNCS, vol. 9842, pp. 473–480. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45378-1_42

    Chapter  Google Scholar 

  8. Cerrada, M., et al.: Fault diagnosis in spur gears based on genetic algorithm and random forest. Mech. Syst. Signal Process. 70, 87–103 (2016)

    Google Scholar 

  9. Dey, A., Shaikh, S.H., Saeed, K., Chaki, N.: Modified majority voting algorithm towards creating reference image for binarization. In: Kumar Kundu, M., Mohapatra, D.P., Konar, A., Chakraborty, A. (eds.) Advanced Computing, Networking and Informatics- Volume 1. SIST, vol. 27, pp. 221–227. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07353-8_26

    Chapter  Google Scholar 

  10. Genuer, R., Poggi, J.M., Tuleau-Malot, Ch., Elsevier: Variable selection using random forests. Pattern Recogn. Lett. 31(14), 2225–2236 (2010)

    Article  Google Scholar 

  11. Heda, P., Rojek, I., Burduk, R.: Dynamic ensemble selection – application to classification of cutting tools. In: Saeed, K., Dvorský, J. (eds.) CISIM 2020. LNCS, vol. 12133, pp. 345–354. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-47679-3_29

    Chapter  Google Scholar 

  12. James, G., Witten, D., Hastie, T., Tibshirani, R.: An Introduction to Statistical Learning. STS, vol. 103. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-7138-7

    Book  MATH  Google Scholar 

  13. Kuhn, M., Johnson, K.: Applied Predictive Modeling. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-6849-3

    Book  MATH  Google Scholar 

  14. Li, Y., Wu, F.X., Ngom, A.: A review on machine learning principles for multi-view biological data integration. Briefings Bioinf. 19(2), 325–340 (2018)

    Google Scholar 

  15. Liaw, A., Wiener, M.: Classification and regression by random forest. R News 2(3), 18–22 (2002)

    Google Scholar 

  16. Lipinski, P., Brzychczy, E., Zimroz, R.: Decision tree-based classification for planetary gearboxes’ condition monitoring with the use of vibration data in multidimensional symptom space. Sensors 20, 1–17 (2020). https://doi.org/10.3390/s20215979

  17. Maqsood, I., Abraham, A.: Weather analysis using ensemble of connectionist learning paradigms. Appl. Soft Comput. 7, 995–1004 (2007)

    Article  Google Scholar 

  18. Polikar, R.: Bootstrap inspired techniques in computational intelligence: ensemble of classifiers, incremental learning, data fusion and missing features. IEEE Signal Process. Mag. 24(4), 59–72 (2007)

    Article  Google Scholar 

  19. Polikar, R.: Ensemble based systems in decision making. IEEE Circ. Syst. Mag. 9(3), 21–45 (2006)

    Article  Google Scholar 

  20. Polikar, R.: Ensemble learning. Scholarpedia 4(1), 2776 (2009)

    Article  Google Scholar 

  21. Ripley, B.D.: Pattern Recognition and Neural Networks. Cambridge University Press, Great Britain (1996)

    Book  Google Scholar 

  22. Ripley, B.D.: Package ‘nnet’. Package for feed-forward neural networks with a single hidden layer, and for multinomial log-linear models, pp. 1–11. cran.r-project.org. 3 May 2021

    Google Scholar 

  23. Stapor, K., Ksieniewicz, P., Garcia, S., Wozniak, M.: How to design the fair experimental classifier evaluation. Appl. Soft Comput. J. 104, 107219 (2021)

    Google Scholar 

  24. Zimroz, R., Bartkowiak, A.: Two simple multivariate procedures for monitoring planetary gearboxes in non-stationary operating conditions. Mech. Syst. Signal Process. 38, 237–247 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna M. Bartkowiak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bartkowiak, A.M., Zimroz, R. (2021). Importance of Variables in Gearbox Diagnostics Using Random Forests and Ensemble Credits. In: Saeed, K., Dvorský, J. (eds) Computer Information Systems and Industrial Management. CISIM 2021. Lecture Notes in Computer Science(), vol 12883. Springer, Cham. https://doi.org/10.1007/978-3-030-84340-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84340-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84339-7

  • Online ISBN: 978-3-030-84340-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics