Abstract
Co-working and interaction of automated systems and humans in a warehouse is a significant challenge of progressing industrial systems’ autonomy. Especially, blind corners pose a critical scenario, in which infrastructure-based sensors can provide more safety. The automation of vehicles is usually tied to an argument on improved safety. However, current standards still rely on the awareness of humans to avoid collisions, which is limited at corners with occlusion. Based on the examination of blind corner scenarios in a warehouse, we derive the relevant critical situations. We propose an architecture that uses infrastructure sensors to prevent human-robot collisions at blind corners with respect to automated forklifts. This includes a safety critical function using wireless communication, which sporadically might be unavailable or disturbed. Therefore, the proposed architecture is able to mitigate these faults and gracefully degrades performance if required. Within our extensive evaluation, we use a warehouse simulation to verify our approach and to estimate the impact on an automated forklift’s performance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Boehning, M.: Improving safety and efficiency of AGVs at warehouse black spots. In: IEEE ICCP, pp. 245–249, September 2014. https://doi.org/10.1109/ICCP.2014.6937004
Cantini, A., De Carlo, F., Tucci, M.: Towards forklift safety in a warehouse: an approach based on the automatic analysis of resource flows. Sustainability 12(21), 8949 (2020). https://doi.org/10.3390/su12218949
Cao, L., Depner, T., Borstell, H., Richter, K.: Discussions on sensor-based assistance systems for forklifts. In: Smart SysTech, pp. 1–8, June 2019
Cohen, H.H., Jensen, R.C.: Measuring the effectiveness of an industrial lift truck safety training program. J. Saf. Res. 15(3), 125–135 (1984). https://doi.org/10.1016/0022-4375(84)90023-9
De Ryck, M., Versteyhe, M., Debrouwere, F.: Automated guided vehicle systems, state-of-the-art control algorithms and techniques. J. Manuf. Syst. 54, 152–173 (2020). https://doi.org/10.1016/j.jmsy.2019.12.002
Arbeitsunfallgeschehen 2019: Statistik 21537, DGUV, September 2020. https://publikationen.dguv.de/widgets/pdf/download/article/3893
Drabek, C., et al.: Dependable and efficient cloud-based safety-critical applications by example of automated valet parking. In: Martins, A.L., Ferreira, J.C., Kocian, A., Costa, V. (eds.) INTSYS 2020. LNICST, vol. 364, pp. 90–109. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-71454-3_6
Everett, H.R., Gage, D.W., Gilbreath, G.A., Laird, R.T., Smurlo, R.P.: Real-world issues in warehouse navigation. In: Mobile Robots IX, vol. 2352, pp. 249–259. SPIE, Boston, January 1995. https://doi.org/10.1117/12.198975
Manipulation von Schutzeinrichtungen - Verhindern, Erschweren, Erkennen. Fachbereich AKTUELL FB HM-022, FB HM DGUV, July 2016
Safety in the future: Whitepaper, IEC, Geneva, Switzerland, November 2020. https://go.iec.ch/wpsif
Industrial trucks: Safety requirements and verification: Part 4: Driverless industrial trucks and their systems. International Standard ISO 3691-4:2020(E) (2020)
Kojima, K., Sato, A., Taya, F., Kameda, Y., Ohta, Y.: NaviView: visual assistance by virtual mirrors at blind intersection. In: ITSC, pp. 592–597, September 2005. https://doi.org/10.1109/ITSC.2005.1520120
Korte, D.: Sicherheitsbezogenes Sensorsystem für fahrerlose Transportfahrzeuge. Logist. J. 2020(12) (2020). https://doi.org/10.2195/LJ_PROC_KORTE_DE_202012_01
Košnar, K., Ecorchard, G., Přeučil, L.: Localization of humans in warehouse based on rack detection. In: ECMR, pp. 1–6, September 2019. https://doi.org/10.1109/ECMR.2019.8870913
Löcklin, A., Ruppert, T., Jakab, L., Libert, R., Jazdi, N., Weyrich, M.: Trajectory prediction of humans in factories and warehouses with real-time locating systems. In: IEEE ETFA, vol. 1, pp. 1317–1320 (2020). https://doi.org/10.1109/ETFA46521.2020.9211913
Lombard, A., Perronnet, F., Abbas-Turki, A., El Moudni, A.: Decentralized management of intersections of automated guided vehicles. IFAC-PapersOnLine 49(12), 497–502 (2016). https://doi.org/10.1016/j.ifacol.2016.07.669
Markis, A., Papa, M., Kaselautzke, D., Rathmair, M., Sattinger, V., Brandstotter, M.: Safety of mobile robot systems in industrial applications. In: Proceedings of the ARW & OAGM Workshop, Steyr, Austria, pp. 26–31 (2019). https://doi.org/10.3217/978-3-85125-663-5-04
Michel, O.: Cyberbotics Ltd. Webots\(^{\rm TM}\): professional mobile robot simulation. J. Adv. Robot. Syst. 1(1), 39–42 (2004). https://doi.org/10.5772/5618
Morales, Y., Yoshihara, Y., Akai, N., Takeuchi, E., Ninomiya, Y.: Proactive driving modeling in blind intersections based on expert driver data. In: IEEE IV, Los Angeles, CA, USA, pp. 901–907, June 2017. https://doi.org/10.1109/IVS.2017.7995830
Naser, F., et al.: ShadowCam: real-time detection of moving obstacles behind a corner for autonomous vehicles. In: ITSC, Maui, HI, USA, pp. 560–567 (2018). https://doi.org/10.1109/ITSC.2018.8569569
Okamoto, T., Yamada, Y.: Study of conditions for safe and efficient traffic in an indoor blind corner-based decision model with consideration for tactics and information uncertainty. In: 2012 IEEE RO-MAN, pp. 682–688, September 2012. https://doi.org/10.1109/ROMAN.2012.6343830
O’Toole, M., Lindell, D.B., Wetzstein, G.: Confocal non-line-of-sight imaging based on the light-cone transform. Nature 555(7696), 338–341 (2018). https://doi.org/10.1038/nature25489
Platbrood, F., Görnemann, O.: Safe Robotics – die Sicherheit in kollaborativen Robotersystemen. Whitepaper 8020620, SICK AG, June 2018
Railsback, B.T., Ziernicki, R.M.: Stand-up forklift acceleration. In: ASME IMECE, pp. 421–424. ASMEDC, Vancouver, November 2010. https://doi.org/10.1115/IMECE2010-38940
Rey, R., Corzetto, M., Cobano, J.A., Merino, L., Caballero, F.: Human-robot co-working system for warehouse automation. In: IEEE ETFA, pp. 578–585 (2019). https://doi.org/10.1109/ETFA.2019.8869178
Sabattini, L., et al.: The PAN-robots project: advanced automated guided vehicle systems for industrial logistics. IEEE Robot. Autom. Mag. 25(1), 55–64 (2018). https://doi.org/10.1109/MRA.2017.2700325
Scheuvens, L., Hößler, T., Barreto, A.N., Fettweis, G.P.: Wireless control communications co-design via application-adaptive resource management. In: 2019 IEEE 2nd 5G World Forum (5GWF), pp. 298–303, September 2019
Shirazi, M.S., Morris, B.T.: Looking at intersections: a survey of intersection monitoring, behavior and safety analysis of recent studies. IEEE Trans. Intell. Transp. Syst. 18(1), 4–24 (2017). https://doi.org/10.1109/TITS.2016.2568920
Solomitckii, D., Barneto, C.B., Turunen, M., Allén, M., Koucheryavy, Y., Valkama, M.: Millimeter-wave automotive radar scheme with passive reflector for blind corner conditions. In: EuCAP, Copenhagen, Denmark, pp. 1–5, March 2020. https://doi.org/10.23919/EuCAP48036.2020.9135926
Forklift safety - reducing the risks. Technical report, State of Queensland (2019). https://www.worksafe.qld.gov.au/__data/assets/pdf_file/0021/21459/forklift-safety-reducing-risks-guide.pdf
Sume, A., et al.: Radar detection of moving targets behind corners. IEEE Trans. Geosci. Remote Sens. 49(6), 2259–2267 (2011). https://doi.org/10.1109/TGRS.2010.2096471
Sun, E., Ma, R.: The UWB based forklift trucks indoor positioning and safety management system. In: IEEE IAEAC, pp. 86–90, March 2017. https://doi.org/10.1109/IAEAC.2017.8053982
Thai, K., et al.: Around-the-corner radar: detection and localization of a target in non-line of sight. In: IEEE RadarConf, Seattle, WA, USA, pp. 0842–0847, May 2017. https://doi.org/10.1109/RADAR.2017.7944320
Tiusanen, R., Malm, T., Ronkainen, A.: An overview of current safety requirements for autonomous machines – review of standards. Open Eng. 10(1) (2020). https://doi.org/10.1515/eng-2020-0074
Yoshihara, Y., Morales, Y., Akai, N., Takeuchi, E., Ninomiya, Y.: Autonomous predictive driving for blind intersections. In: IEEE/RSJ IROS (2017). https://doi.org/10.1109/IROS.2017.8206185
Acknowledgment
The research leading to these results has partially received funding from the Bavarian Ministry of Economic Affairs, Regional Development and Energy as Fraunhofer High Performance Center Secure Intelligent Systems.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Drabek, C., Kosmalska, A., Weiss, G., Ishigooka, T., Otsuka, S., Mizuochi, M. (2021). Safe Interaction of Automated Forklifts and Humans at Blind Corners in a Warehouse with Infrastructure Sensors. In: Habli, I., Sujan, M., Bitsch, F. (eds) Computer Safety, Reliability, and Security. SAFECOMP 2021. Lecture Notes in Computer Science(), vol 12852. Springer, Cham. https://doi.org/10.1007/978-3-030-83903-1_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-83903-1_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-83902-4
Online ISBN: 978-3-030-83903-1
eBook Packages: Computer ScienceComputer Science (R0)