Abstract
This article proposes a hybrid intelligent system based on the application and combination of Artificial Intelligence methods as a decision support tool. The objective of this study is to exploit the advantages of the constituent algorithms, to predict the permanence rates of readers in news from a digital media. With this, the editor will be able to decide whether to publish a news item or not. To evaluate the effectiveness of the hybrid intelligent system, data from a reference digital media is used. In addition, a series of performance metrics is calculated, where 88% effective is demonstrated with the predicted results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Change history
03 August 2021
In the original version of the book, the following correction has been updated: In Chapter 25, the given and family name for the authors Jessie Caridad Martín Sujo, Elisabet Golobardes i Ribé, Xavier Vilasís Cardona, Virginia Jiménez Ruano, Javier Villasmil López now been correctly identified and updated. The book and the chapter have been updated with the change.
Notes
- 1.
Published in Digital NewsReport. Available in<https://www.digitalnewsreport.es/2019/el-45-de-los-usuarios-elige-la-television-como-medio-principal-para-informarse-mientras-el-40-opta-por-las-fuentes-online/>.
References
AIMC. Infografía Resumen 22 Navegantes en la Red. Disponible en https://www.aimc.es/otros-estudios-trabajos/navegantes-la-red/infografia-resumen-22o-navegantes-la-red/
Parratt, S.: Por qué los jóvenes no leen periódicos Análisis y propuestas. Libro Nuevos Medios, Nueva Comunicación. Salamanca. (España) (2010). Disponible en http://campus.usal.es/ comunicacion3punto0/comunicaciones/080.pdf
Casero-Ripollés, A.: Más allá de los diarios: el consumo de noticias de los jóvenes en la era digital. Comunicar 20(39), 151–158 (2012)
Epure, E.V., Kille, B., Ingvaldsen, J.E., Deneckere, R., Salinesi, C., Albayrak, S.: Recommending personalized news in short user sessions. In: Proceedings of the Eleventh ACM Conference on Recommender Systems, pp. 121–129, August 2017
Chen, X., Ghysels, E.: News- good or bad- and its impact on volatility predictions over multiple horizons. Rev. Financ. Stud. 24(1), 46–81 (2011)
Ahmed, M., Spagna, S., Huici, F., Niccolini, S.: A peek into the future: predicting the evolution of popularity in user generated content. In: Proceedings of the Sixth ACM International Conference on Web Search and Data Mining, pp. 607–616, February 2013
Caruccio, L., Deufemia, V., Polese, G.: Understanding user intent on the web through interaction mining. J. Vis. Lang. Comput. 31, 230–236 (2015)
Fernandes, K., Vinagre, P., Cortez, P.: A proactive intelligent decision support system for predicting the popularity of online news. In: Portuguese Conference on Artificial Intelligence, pp. 535–546. Springer, Cham, September 2015
Stokowiec, W., Trzciński, T., Wolk, K., Marasek, K., Rokita, P.: Shallow reading with deep learning: predicting popularity of online content using only its title. In: International Symposium on Methodologies for Intelligent Systems, pp. 136–145. Springer, Cham, June 2017
Kong, J., Wang, B., Liu, C., Wu, G.: An approach for predicting the popularity of online security news articles. In: 2018 IEEE Conference on Communications and Network Security (CNS), pp. 1–6. IEEE, May 2018
Pearson, K.: Determination of the coefficient of correlation. Science 30(757), 23–25 (1909)
Chen, T., Guestrin, C.: Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794, August 2016
MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, no. 14, pp. 281–297, June 1967
Kohonen, T.: Self-organized formation of topologically correct feature maps. Biol. Cybern. 43(1), 59–69 (1982)
Ester, M., Kriegel, H. P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Kdd vol. 96, no. 34, pp. 226–231, August 1996
Ketchen, D.J., Shook, C.L.: The application of cluster analysis in strategic management research: an analysis and critique. Strat. Manag. J. 17(6), 441–458 (1996)
Rousseau, P.: Silhouettes: a gaphical aid to the interpretation and validation of custer analysis. J. Comput. Appl. Math. 20(1), 53–65 (1987)
Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)
Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: ICML, vol. 96, pp. 148–156, July 1996
Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967)
Ho, T.K.: Random decision forests. In: Proceedings of 3rd International Conference on Document Analysis and Recognition, vol. 1, pp. 278–282. IEEE, August 1995
Cortes, C., Vapnik, V.: Support vector machine. Mach. Learn. 20(3), 273–297 (1995)
Zell, A.: Simulation neuronaler netze, vol. 1, no. 5.3. Bonn: Addison-Wesley (1994)
MongoDB. https://www.mongodb.com/>
Python. https://www.python.org/>
Acknowledgments
This work has been financed by the Ministry of Economy, Industry and Competitiveness of the Government of Spain and the European Regional Development Fund with the help n\(^o\) RTC-2016-5503-7 (MINECO / FEDER, EU) for the project Smart Data Discovery and Natural Language Generation for Digital Media Performance. And it has also been possible thanks to our partners Agile; Easy at University of Girona and DS4DS research group at La Salle - Ramon Llull University.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Martín Sujo, J.C., Golobardes i Ribé, E., Vilasís Cardona, X., Jiménez Ruano, V., Villasmil López, J. (2022). SmartData: An Intelligent Decision Support System to Predict the Readers Permanence in News. In: Arai, K. (eds) Intelligent Systems and Applications. IntelliSys 2021. Lecture Notes in Networks and Systems, vol 295. Springer, Cham. https://doi.org/10.1007/978-3-030-82196-8_25
Download citation
DOI: https://doi.org/10.1007/978-3-030-82196-8_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-82195-1
Online ISBN: 978-3-030-82196-8
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)