SmartData: An Intelligent Decision Support System to Predict the Readers Permanence in News | SpringerLink
Skip to main content

SmartData: An Intelligent Decision Support System to Predict the Readers Permanence in News

  • Conference paper
  • First Online:
Intelligent Systems and Applications (IntelliSys 2021)
  • The original version of this chapter was revised: The chapter authors’ given and family name has been correctly identified and updated. The correction to this chapter is available at https://doi.org/10.1007/978-3-030-82196-8_61

Abstract

This article proposes a hybrid intelligent system based on the application and combination of Artificial Intelligence methods as a decision support tool. The objective of this study is to exploit the advantages of the constituent algorithms, to predict the permanence rates of readers in news from a digital media. With this, the editor will be able to decide whether to publish a news item or not. To evaluate the effectiveness of the hybrid intelligent system, data from a reference digital media is used. In addition, a series of performance metrics is calculated, where 88% effective is demonstrated with the predicted results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Change history

  • 03 August 2021

    In the original version of the book, the following correction has been updated: In Chapter 25, the given and family name for the authors Jessie Caridad Martín Sujo, Elisabet Golobardes i Ribé, Xavier Vilasís Cardona, Virginia Jiménez Ruano, Javier Villasmil López now been correctly identified and updated. The book and the chapter have been updated with the change.

Notes

  1. 1.

    Published in Digital NewsReport. Available in<https://www.digitalnewsreport.es/2019/el-45-de-los-usuarios-elige-la-television-como-medio-principal-para-informarse-mientras-el-40-opta-por-las-fuentes-online/>.

References

  1. AIMC. Infografía Resumen 22 Navegantes en la Red. Disponible en https://www.aimc.es/otros-estudios-trabajos/navegantes-la-red/infografia-resumen-22o-navegantes-la-red/

  2. Parratt, S.: Por qué los jóvenes no leen periódicos Análisis y propuestas. Libro Nuevos Medios, Nueva Comunicación. Salamanca. (España) (2010). Disponible en http://campus.usal.es/ comunicacion3punto0/comunicaciones/080.pdf

  3. Casero-Ripollés, A.: Más allá de los diarios: el consumo de noticias de los jóvenes en la era digital. Comunicar 20(39), 151–158 (2012)

    Article  Google Scholar 

  4. Epure, E.V., Kille, B., Ingvaldsen, J.E., Deneckere, R., Salinesi, C., Albayrak, S.: Recommending personalized news in short user sessions. In: Proceedings of the Eleventh ACM Conference on Recommender Systems, pp. 121–129, August 2017

    Google Scholar 

  5. Chen, X., Ghysels, E.: News- good or bad- and its impact on volatility predictions over multiple horizons. Rev. Financ. Stud. 24(1), 46–81 (2011)

    Article  Google Scholar 

  6. Ahmed, M., Spagna, S., Huici, F., Niccolini, S.: A peek into the future: predicting the evolution of popularity in user generated content. In: Proceedings of the Sixth ACM International Conference on Web Search and Data Mining, pp. 607–616, February 2013

    Google Scholar 

  7. Caruccio, L., Deufemia, V., Polese, G.: Understanding user intent on the web through interaction mining. J. Vis. Lang. Comput. 31, 230–236 (2015)

    Article  Google Scholar 

  8. Fernandes, K., Vinagre, P., Cortez, P.: A proactive intelligent decision support system for predicting the popularity of online news. In: Portuguese Conference on Artificial Intelligence, pp. 535–546. Springer, Cham, September 2015

    Google Scholar 

  9. Stokowiec, W., Trzciński, T., Wolk, K., Marasek, K., Rokita, P.: Shallow reading with deep learning: predicting popularity of online content using only its title. In: International Symposium on Methodologies for Intelligent Systems, pp. 136–145. Springer, Cham, June 2017

    Google Scholar 

  10. Kong, J., Wang, B., Liu, C., Wu, G.: An approach for predicting the popularity of online security news articles. In: 2018 IEEE Conference on Communications and Network Security (CNS), pp. 1–6. IEEE, May 2018

    Google Scholar 

  11. Pearson, K.: Determination of the coefficient of correlation. Science 30(757), 23–25 (1909)

    Article  Google Scholar 

  12. Chen, T., Guestrin, C.: Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794, August 2016

    Google Scholar 

  13. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, no. 14, pp. 281–297, June 1967

    Google Scholar 

  14. Kohonen, T.: Self-organized formation of topologically correct feature maps. Biol. Cybern. 43(1), 59–69 (1982)

    Article  MathSciNet  Google Scholar 

  15. Ester, M., Kriegel, H. P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Kdd vol. 96, no. 34, pp. 226–231, August 1996

    Google Scholar 

  16. Ketchen, D.J., Shook, C.L.: The application of cluster analysis in strategic management research: an analysis and critique. Strat. Manag. J. 17(6), 441–458 (1996)

    Article  Google Scholar 

  17. Rousseau, P.: Silhouettes: a gaphical aid to the interpretation and validation of custer analysis. J. Comput. Appl. Math. 20(1), 53–65 (1987)

    Article  Google Scholar 

  18. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)

    Google Scholar 

  19. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: ICML, vol. 96, pp. 148–156, July 1996

    Google Scholar 

  20. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967)

    Article  Google Scholar 

  21. Ho, T.K.: Random decision forests. In: Proceedings of 3rd International Conference on Document Analysis and Recognition, vol. 1, pp. 278–282. IEEE, August 1995

    Google Scholar 

  22. Cortes, C., Vapnik, V.: Support vector machine. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  23. Zell, A.: Simulation neuronaler netze, vol. 1, no. 5.3. Bonn: Addison-Wesley (1994)

    Google Scholar 

  24. MongoDB. https://www.mongodb.com/&gt

  25. Python. https://www.python.org/&gt

Download references

Acknowledgments

This work has been financed by the Ministry of Economy, Industry and Competitiveness of the Government of Spain and the European Regional Development Fund with the help n\(^o\) RTC-2016-5503-7 (MINECO / FEDER, EU) for the project Smart Data Discovery and Natural Language Generation for Digital Media Performance. And it has also been possible thanks to our partners Agile; Easy at University of Girona and DS4DS research group at La Salle - Ramon Llull University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessie Caridad Martín Sujo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Martín Sujo, J.C., Golobardes i Ribé, E., Vilasís Cardona, X., Jiménez Ruano, V., Villasmil López, J. (2022). SmartData: An Intelligent Decision Support System to Predict the Readers Permanence in News. In: Arai, K. (eds) Intelligent Systems and Applications. IntelliSys 2021. Lecture Notes in Networks and Systems, vol 295. Springer, Cham. https://doi.org/10.1007/978-3-030-82196-8_25

Download citation

Publish with us

Policies and ethics