Towards an Automatic Generation of Persuasive Messages | SpringerLink
Skip to main content

Towards an Automatic Generation of Persuasive Messages

  • Conference paper
  • First Online:
Persuasive Technology (PERSUASIVE 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12684))

Included in the following conference series:

Abstract

In the last decades, the Natural Language Generation (NLG) methods have been improved to generate text automatically. However, based on the literature review, there are not works on generating text for persuading people. In this paper, we propose to use the SentiGAN framework to generate messages that are classified into levels of persuasiveness. And, we run an experiment using the Microtext dataset for the training phase. Our preliminary results show 0.78 of novelty on average, and 0.57 of diversity in the generated messages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bengio, S., Vinyals, O., Jaitly, N., Shazeer, N.: Scheduled sampling for sequence prediction with recurrent neural networks. In: Advances in Neural Information Processing Systems, pp. 1171–1179 (2015)

    Google Scholar 

  2. Cialdini, R.B., Cialdini, R.B.: Influence: The Psychology of Persuasion, vol. 55. Collins, New York (2007)

    Google Scholar 

  3. Ciocarlan, A., Masthoff, J., Oren, N.: Kindness is contagious: study into exploring engagement and adapting persuasive games for wellbeing. In: Proceedings of the 26th Conference on User Modeling, Adaptation and Personalization, pp. 311–319 (2018)

    Google Scholar 

  4. Guo, J., Lu, S., Cai, H., Zhang, W., Yu, Y., Wang, J.: Long text generation via adversarial training with leaked information. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  5. Hoogi, A., Mishra, A., Gimenez, F., Dong, J., Rubin, D.: Natural language generation model for mammography reports simulation. IEEE J. Biomed. Health Inform. 24(9), 2711–2717 (2020). https://doi.org/10.1109/jbhi.2020.2980118

    Article  Google Scholar 

  6. Iyer, R.R., Sycara, K.: An unsupervised domain-independent framework for automated detection of persuasion tactics in text. arXiv preprint arXiv:1912.06745 (2019)

  7. Lin, K., Li, D., He, X., Zhang, Z., Sun, M.T.: Adversarial ranking for language generation. In: Advances in Neural Information Processing Systems, pp. 3155–3165 (2017)

    Google Scholar 

  8. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)

  9. Semeniuta, S., Severyn, A., Barth, E.: A hybrid convolutional variational autoencoder for text generation. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 627–637. Association for Computational Linguistics, Copenhagen, Denmark (September 2017). https://doi.org/10.18653/v1/D17-1066

  10. Toshevska, M., Stojanovska, F., Zdravevski, E., Lameski, P., Gievska, S.: Explorations into deep learning text architectures for dense image captioning. In: Proceedings of the 2020 Federated Conference on Computer Science and Information Systems. IEEE (September 2020). https://doi.org/10.15439/2020f57

  11. Wang, K., Wan, X.: Sentigan: generating sentimental texts via mixture adversarial networks. In: IJCAI, pp. 4446–4452 (2018)

    Google Scholar 

  12. Wang, K., Wan, X.: Automatic generation of sentimental texts via mixture adversarial networks. Artif. Intell. 275, 540–558 (2019)

    Article  Google Scholar 

  13. Young, J., Martell, C., Anand, P., Ortiz, P., Gilbert IV, H.T., et al.: A microtext corpus for persuasion detection in dialog. In: Workshops at the Twenty-Fifth AAAI Conference on Artificial Intelligence. Citeseer (2011)

    Google Scholar 

  14. Yu, L., Zhang, W., Wang, J., Yu, Y.: Seqgan: Sequence generative adversarial nets with policy gradient. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  15. Zivot, E., Wang, J.: Modeling Financial Time Series with S-PLUS® vol. 191. Springer Science & Business Media, Heidelberg (2007)

    Google Scholar 

Download references

Acknowledgments

This work has been supported by CONCYTEC - FONDECYT within the framework of the call E038-01 contract 014-2019. N. Condori Fernandez wish also to thank Datos 4.0 (TIN2016-78011-C4-1-R) funded by MINECO-AEI/FEDER-UE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelly Condori-Fernandez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lipa-Urbina, E., Condori-Fernandez, N., Suni-Lopez, F. (2021). Towards an Automatic Generation of Persuasive Messages. In: Ali, R., Lugrin, B., Charles, F. (eds) Persuasive Technology. PERSUASIVE 2021. Lecture Notes in Computer Science(), vol 12684. Springer, Cham. https://doi.org/10.1007/978-3-030-79460-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79460-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79459-0

  • Online ISBN: 978-3-030-79460-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics