FloWare: An Approach for IoT Support and Application Development | SpringerLink
Skip to main content

FloWare: An Approach for IoT Support and Application Development

  • Conference paper
  • First Online:
Enterprise, Business-Process and Information Systems Modeling (BPMDS 2021, EMMSAD 2021)

Abstract

With the advancement of computing technology, we are witnessing the dawn of a new era of the Internet of Things (IoT) paradigm in which objects equipped with sensors, actuators and processing capabilities communicate with each other to serve a given goal. The IoT’s intrinsic nature, which uses heterogeneous devices, resources and different communication protocols, complicates IoT applications’ design, development, and validation. Reducing the complexity of building IoT applications is one of the current challenges in this area.

To address this challenge, we focus on a model-driven approach to support IoT systems’ management and the development of IoT applications. In particular, we propose the FloWare approach and its toolchain, which combine Software Product Line and Flow-Based Programming paradigms to manage the complexity in the various stages of the IoT application development process. An automatic transformation procedure generates the final IoT application, an executable Node-RED flow, starting from a configuration of the designed Feature Models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    FloWare Core: http://pros.unicam.it/floware/.

  2. 2.

    Node-RED: https://nodered.org/.

  3. 3.

    FeatureIDE: http://www.featureide.com/.

  4. 4.

    WoT Standard: https://www.w3.org/TR/wot-thing-description.

References

  1. Abbas, A., Siddiqui, I.F., Lee, S.U.J., Bashir, A.K.: Binary pattern for nested cardinality constraints for software product line of IoT-based feature models. IEEE Access 5, 3971–3980 (2017)

    Article  Google Scholar 

  2. Alférez, M., Moreira, A., Amaral, V., Araújo, J.: Model-driven requirements specification for software product lines. In: Model-Driven Domain Analysis and Software Development: Architectures and Functions, pp. 369–386. IGI Global (2011)

    Google Scholar 

  3. Atzori, L., Iera, A., Morabito, G.: The Internet of Things: a survey. Comput. Networks 54(15), 2787–2805 (2010)

    Article  Google Scholar 

  4. Cetina, C., Giner, P., Fons, J., Pelechano, V.: Autonomic computing through reuse of variability models at runtime: the case of smart homes. Computer 42(10), 37–43 (2009)

    Article  Google Scholar 

  5. Cognini, R., Corradini, F., Gnesi, S., Polini, A., Re, B.: Business process flexibility - a systematic literature review with a software systems perspective. Inf. Syst. Front. 20(2), 343–371 (2016). https://doi.org/10.1007/s10796-016-9678-2

    Article  Google Scholar 

  6. Cognini, R., Corradini, F., Polini, A., Re, B.: Extending feature models to express variability in business process models. In: Persson, A., Stirna, J. (eds.) CAiSE 2015. LNBIP, vol. 215, pp. 245–256. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19243-7_24

    Chapter  Google Scholar 

  7. Cognini, R., Corradini, F., Polini, A., Re, B.: Business process feature model: an approach to deal with variability of business processes. In: Domain-Specific Conceptual Modeling, pp. 171–194. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39417-6_8

    Chapter  Google Scholar 

  8. Gámez, N., Fuentes, L.: Architectural evolution of FamiWare using cardinality-based feature models. Inf. Softw. Technol. 55(3), 563–580 (2013)

    Article  Google Scholar 

  9. Gascueña, J.M., Navarro, E., Fernández-Caballero, A.: Model-driven engineering techniques for the development of multi-agent systems. Eng. Appl. Artif. Intell. 25(1), 159–173 (2012)

    Article  Google Scholar 

  10. Geraldi, R.T., Reinehr, S.S., Malucelli, A.: Software product line applied to the Internet of Things: a systematic literature review. Inf. Softw. Technol. 124, 106293 (2020)

    Article  Google Scholar 

  11. Havard, N., McGrath, S., Flanagan, C., MacNamee, C.: Smart building based on Internet of Things technology. In: International Conference on Sensing Technology, pp. 278–281 (2018)

    Google Scholar 

  12. Jain, R., Tata, S.: Cloud to edge: distributed deployment of process-aware IoT applications. In: International Conference on Edge Computing, pp. 182–189. IEEE Computer Society (2017)

    Google Scholar 

  13. Jalaian, B., Gregory, T., Suri, N., Russell, S., Sadler, L., Lee, M.: Evaluating LoRaWAN-based IoT devices for the tactical military environment. In: World Forum on Internet of Things, pp. 124–128. IEEE (2018)

    Google Scholar 

  14. Lee, I., Lee, K.: The Internet of Things (IoT): applications, investments, and challenges for enterprises. Bus. Horiz. 58, 431–440 (2015)

    Article  Google Scholar 

  15. Morrison, J.P.: Flow-Based Programming: A New Approach to Application Development, 2nd edn. CreateSpace, Scotts Valley (2010)

    Google Scholar 

  16. do Nascimento, N.M., Alencar, P.S.C., Lucena, C., Cowan, D.D.: An IoT analytics embodied agent model based on context-aware machine learning. In: IEEE International Conference on Big Data, pp. 5170–5175. IEEE (2018)

    Google Scholar 

  17. Ortiz, Ó., García, A.B., Capilla, R., Bosch, J., Hinchey, M.: Runtime variability for dynamic reconfiguration in wireless sensor network product lines. Int. Softw. Prod. Line Conf. 2, 143–150 (2012)

    Article  Google Scholar 

  18. Patel, P., Cassou, D.: Enabling high-level application development for the Internet of Things. J. Syst. Softw. 103, 62–84 (2015)

    Article  Google Scholar 

  19. Pereira, J.A., Maciel, L., Noronha, T.F., Figueiredo, E.: Heuristic and exact algorithms for product configuration in software product lines. In: International Systems and Software Product Line Conference, p. 247. ACM (2018)

    Google Scholar 

  20. Pohl, K., Bockle, G.V.D.L.F.: Software Product Line Engineering: Foundations, Principles and Techniques. Springer, Heidelberg (2005). https://doi.org/10.1007/3-540-28901-1

  21. Poongothai, M., Subramanian, P.M., Rajeswari, A.: Design and implementation of IoT based smart laboratory. In: International Conference on Industrial Engineering and Applications, pp. 169–173. IEEE (2018)

    Google Scholar 

  22. Prehofer, C., Chiarabini, L.: From Internet of Things mashups to model-based development. In: 39th Annual Computer Software and Applications Conference, pp. 499–504. IEEE Computer Society (2015)

    Google Scholar 

  23. Ray, P.P.: A survey on visual programming languages in Internet of Things. Sci. Program. 2017, 1231430:1–1231430:6 (2017)

    Google Scholar 

  24. Sicari, S., Rizzardi, A., Coen-Porisini, A.: How to evaluate an internet of things system: models, case studies, and real developments. Softw. Pract. Exp. 49(11), 1663–1685 (2019)

    Article  Google Scholar 

  25. Sicari, S., Rizzardi, A., Coen-Porisini, A.: Smart transport and logistics: a node-red implementation. Internet Technol. Lett. 2(2), 34 (2019)

    Article  Google Scholar 

  26. Sosa-Reyna, C.M., Tello-Leal, E., Alabazares, D.L.: Methodology for the model-driven development of service oriented IoT applications. J. Syst. Archit. 90, 15–22 (2018)

    Article  Google Scholar 

  27. Szydlo, T., Brzoza-Woch, R., Sendorek, J., Windak, M., Gniady, C.: Flow-based programming for IoT leveraging fog computing. In: International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises, pp. 74–79. IEEE Computer Society (2017)

    Google Scholar 

  28. Venckauskas, A., Stuikys, V., Jusas, N., Burbaite, R.: Model-driven approach for body area network application development. Sensors 16(5), 670 (2016)

    Article  Google Scholar 

  29. Venckauskas, A., Stuikys, V., Toldinas, J., Jusas, N.: A model-driven framework to develop personalized health monitoring. Symmetry 8, 65 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio Fornari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Corradini, F., Fedeli, A., Fornari, F., Polini, A., Re, B. (2021). FloWare: An Approach for IoT Support and Application Development. In: Augusto, A., Gill, A., Nurcan, S., Reinhartz-Berger, I., Schmidt, R., Zdravkovic, J. (eds) Enterprise, Business-Process and Information Systems Modeling. BPMDS EMMSAD 2021 2021. Lecture Notes in Business Information Processing, vol 421. Springer, Cham. https://doi.org/10.1007/978-3-030-79186-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79186-5_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79185-8

  • Online ISBN: 978-3-030-79186-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics