Crucial Challenges in Large-Scale Black Box Analyses | SpringerLink
Skip to main content

Crucial Challenges in Large-Scale Black Box Analyses

  • Conference paper
  • First Online:
Advances in Bias and Fairness in Information Retrieval (BIAS 2021)

Abstract

To hold software service and platform providers accountable, it is necessary to create trustworthy, quantified evidence of problematic algorithmic decisions, e.g., by large-scale black box analyses. In this article, we summarize typical and general challenges that arise when such studies are conducted. Those challenges were encountered in multiple black box analyses we conducted, among others in a recent study to quantify, whether Google searches result in search results and ads for unproven stem cell therapies when patients research their disease and possible therapies online. We characterize the challenges by the approach to the black box analysis, and summarize some of the lessons we learned and solutions, that will generalize well to all kinds of large-scale black box analyses. While the studies we base this article on where one-time studies with an explorative character, we conclude the article with some challenges and open questions that need to be solved to hold software service and platform providers accountable with the help of permanent, large-scale black box analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    These initial impressions were collected during the Wellcome Trust Seed project-funded workshop “Patienthood and Participation in the Digital Era: findings and future directions” hosted by the Usher Institute at the University of Edinburgh in August 2018. (Erikainen et al. [14]).

  2. 2.

    www.eurostemcell.org.

References

  1. Andreou, A., Venkatadri, G., Goga, O., Gummadi, K., Loiseau, P., Mislove, A.: Investigating Ad transparency mechanisms in social media: a case study of Facebook’s explanations. In: NDSS 2018 - Network and Distributed System Security Symposium, San Diego, CA, United States, pp. 1–15 (2018)

    Google Scholar 

  2. Ashby, W.R.: An Introduction to Cybernetics. Chapman & Hall Ltd., London (1957)

    Book  Google Scholar 

  3. Biddings, A.: A new policy on advertising for speculative and experimental medical treatments. Google Ads Help (2019). https://support.google.com/google-ads/answer/9475042. Accessed 11 Mar 2021

  4. Bovens, M.: Analysing and assessing accountability: a conceptual framework1. Eur. Law J. 13(4), 447–468 (2007). https://doi.org/10.1111/j.1468-0386.2007.00378.x

    Article  MathSciNet  Google Scholar 

  5. Bucher, T.: Neither black nor box: ways of knowing algorithms. In: Kubitschko, S., Kaun, A. (eds.) Innovative Methods in Media and Communication Research, pp. 81–98. Palgrave Macmillan, Cham (2016). https://doi.org/10.1007/978-3-319-40700-5_5

  6. Cadwalladr, C.: Facebook’s role in Brexit - and the threat to democracy (2019). TED Talk. https://www.ted.com/talks/carole_cadwalladr_facebook_s_role_in_brexit_and_the_threat_to_democracy. Accessed Mar 11 2021

  7. Datta, A., Tschantz, M.C., Datta, A.: Automated experiments on Ad privacy settings. Proc. Priv. Enhancing Technol. 2015(1), 92–112 (2015). https://doi.org/10.1515/popets-2015-0007

    Article  Google Scholar 

  8. DEK: Gutachten der Datenethikkommission der deutschen Bundesregierung. Bundesministerium des Innern, für Bau und Heimat (2019). https://www.bmi.bund.de/SharedDocs/downloads/DE/publikationen/themen/it-digitalpolitik/gutachten-datenethikkommission.pdf. Accessed 11 Mar 2021

  9. Diakopoulos, N.: Algorithmic accountability reporting: on the investigation of black boxes, tow center for digital journalism/knight brief. Columbia Journal. School (2014). https://doi.org/10.7916/D8ZK5TW2

    Article  Google Scholar 

  10. Diakopoulos, N.: Algorithmic accountability. Journalistic investigation of computational power structures. Digit. Journal. 3(3), 398–415 (2015). https://doi.org/10.1080/21670811.2014.976411

    Article  Google Scholar 

  11. Dixon, E., Enos, E., Brodmerkle, S.: A/B testing of a webpage. United States Patent (2011). https://patentimages.storage.googleapis.com/35/bf/a3/2a1ee861e2adaf/US7975000.pdf. Accessed 11 Mar 2021

  12. Enquete-Kommission: Künstliche Intelligenz – GesellschaftlicheVerantwortung und wirtschaftliche, soziale und ökologische Potenzialedes Deutschen Bundestags: Abschlussbericht. Berlin, Drucksache 19/23700 (2020). Accessed 11 Mar 2021

    Google Scholar 

  13. Erikainen, S., Couturier, A., Chan, S.: Marketing experimental stem cell therapies in the UK: biomedical lifestyle products and the promise of regenerative medicine in the digital era. Sci. Cult. 29(2), 219–244 (2020). https://doi.org/10.1080/09505431.2019.1656183

    Article  Google Scholar 

  14. Erikainen, S., Pickersgill, M., Cunningham-Burley, S., Chan, S.: Patienthood and participation in the digital era. Digit. Health (2019). https://doi.org/10.1177/2055207619845546

    Article  Google Scholar 

  15. Europäische Kommission: Weißbuch Zur Künstlichen Intelligenz - ein europäisches Konzept für Exzellenz und Vertrauen (2020). Europäische Kommission https://ec.europa.eu/info/sites/info/files/commission-white-paper-artificial-intelligence-feb2020_de.pdf. Accessed 11 Mar 2021

  16. Gillespie, T.: The relevance of algorithms. In: Media Technologies: Essays on Communication, Materiality, and Society, p. 167 (2014)

    Google Scholar 

  17. Google: Healthcare and medicines. Google advertising policies help (2019). https://support.google.com/adspolicy/answer/176031. Accessed 11 Mar 2021

  18. Granka, L.A.: The politics of search: a decade retrospective. Inf. Soc. 26(5), 364–374 (2010). https://doi.org/10.1080/01972243.2010.511560

    Article  Google Scholar 

  19. Grunwald, A.: Technikfolgenabschätzung - Eine Einführung. Edition Sigma, Berlin (2002)

    Google Scholar 

  20. Introna, L.D.: Algorithms, governance, and governmentality: on governing academic writing. Sci. Technol. Human Values 41(1), 17–49 (2016). https://doi.org/10.1177/0162243915587360

    Article  Google Scholar 

  21. Kienle, A.: Integration von Wissensmanagement und kollaborativem Lernen durch technisch unterstützte Kommunikationsprozesse. Dissertation, Universität Dortmund, Dortmund (2003)

    Google Scholar 

  22. Kitchin, R.: Thinking critically about and researching algorithms. Inf. Commun. Soc. 20(1), 14–29 (2017). https://doi.org/10.1080/1369118X.2016.1154087

    Article  Google Scholar 

  23. Krafft, T.D., Gamer, M., Zweig, K.A.: What did you see? A study to measure personalization in Google’s search engine. EPJ Data Sci. 8(1), 38 (2019)

    Article  Google Scholar 

  24. Krafft, T.D., Hauer, M.P., Zweig, K.A.: Why do we need to be bots? What prevents society from detecting biases in recommendation systems. In: Boratto, L., Faralli, S., Marras, M., Stilo, G. (eds.) BIAS 2020. CCIS, vol. 1245, pp. 27–34. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52485-2_3

    Chapter  Google Scholar 

  25. Noble, S.U.: Algorithms of Oppression - How Search Engines Reinforce Racism. New York United Press, New York (2018)

    Book  Google Scholar 

  26. Pagano, G., Ferrara, N., Brooks, D.J., Pavese, N.: Age at onset and Parkinson disease phenotype. Neurology 86(15), 1400–1407 (2016). https://doi.org/10.1212/WNL.0000000000002461

    Article  Google Scholar 

  27. Prainsack, B.: Data donation: how to resist the iLeviathan. In: Krutzinna, J., Floridi, L. (eds.) The Ethics of Medical Data Donation. PSS, vol. 137, pp. 9–22. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-04363-6_2

    Chapter  Google Scholar 

  28. Reber, M., Krafft, T.D., Krafft, R., Zweig, K.A., Couturier, A.: Data donations for mapping risk in google search of health queries: a case study of unproven stem cell treatments in SEM. In: IEEE Symposium Series on Computational Intelligence (SSCI), pp. 2985–2992 (2020)

    Google Scholar 

  29. Sandvig, C., Hamilton, K., Karahalios, K., Langbort, C.: Auditing algorithms: research methods for detecting discrimination on internet platforms. Data Discrim. Conv. Crit. Concerns Prod. 22, 4349–4357 (2014)

    Google Scholar 

  30. Seaver, N.: Knowing algorithms. In: Media in Transition, Cambridge, MA, vol. 8 (2014)

    Google Scholar 

  31. Wieringa, M.: What to account for when accounting for algorithms: a systematic literature review on algorithmic accountability. In: Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, pp. 1–18 (2020)

    Google Scholar 

  32. Zweig, K.A., Krafft, T.D., Klingel, A., Park, E.: Sozioinformatik Ein neuer Blick auf Informatik und Gesellschaft. Carl Hanser Verlag (2021, in publication)

    Google Scholar 

Download references

Acknowledgment

The presented project EDD has been partially funded by the EU stem cell public engagement project, EuroStemCellFootnote 2 and by a generous grant from the University of Edinburgh School of Social and Political Science. The research was supported by the project GOAL “Governance of and by algorithms (Funding code 01IS19020) which is funded by the German Federal Ministry of Education and Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias D. Krafft .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Krafft, T.D., Reber, M., Krafft, R., Coutrier, A., Zweig, K.A. (2021). Crucial Challenges in Large-Scale Black Box Analyses. In: Boratto, L., Faralli, S., Marras, M., Stilo, G. (eds) Advances in Bias and Fairness in Information Retrieval. BIAS 2021. Communications in Computer and Information Science, vol 1418. Springer, Cham. https://doi.org/10.1007/978-3-030-78818-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78818-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78817-9

  • Online ISBN: 978-3-030-78818-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics