Designing a Gender-Inclusive Conversational Agent For Pair Programming: An Empirical Investigation | SpringerLink
Skip to main content

Designing a Gender-Inclusive Conversational Agent For Pair Programming: An Empirical Investigation

  • Conference paper
  • First Online:
Artificial Intelligence in HCI (HCII 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12797))

Included in the following conference series:

  • 3209 Accesses

Abstract

Recently, research has shown that replacing a human with an agent in a pair programming context can bring similar benefits such as increased code quality, productivity, self-efficacy, and knowledge transfer as it does with a human. However, to create a gender-inclusive agent, we need to understand the communication styles between human-human and human-agent pairs. To investigate the communication styles, we conducted gender-balanced studies with human-human pairs in a remote lab setting with 18 programmers and human-agent pairs using Wizard-of-Oz methodology with 14 programmers. Our quantitative and qualitative analysis of the communication styles between the two studies showed that humans were more comfortable asking questions to an agent and interacting with it than other humans. We also found men participants showed less uncertainty and trusted agent solutions more, while women participants used more instructions and apologized less to an agent. Our research results confirm the feasibility of creating gender-inclusive conversational agents for programming.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Robe, P., Kuttal, S.K., Zhang, Y., Bellamy, R.: Can machine learning facilitate remote pair programming? Challenges, insights & implications. In: Proceedings of Visual Languages and Human-Centric Computing (2020)

    Google Scholar 

  2. Kuttal, S.K., Gerstner, K., Bejarano, A.: Remote pair programming in online CS education.: investigating through a gender lens. In: Proceedings of Visual Languages and Human-Centric Computing (2019)

    Google Scholar 

  3. Kuttal, S.K., Myers, J., Gurka, S., Magar, D., Piorkowski, D., Bellamy, R.: Towards designing conversational agents for pair programming: accounting for creativity strategies and conversational styles. In: Proceedings of Visual Languages and Human-Centric Computing (2020)

    Google Scholar 

  4. Kuttal, S.K., Kwasny, K., Ong, B., Robe, P.: Understand the tradeoffs for substituting humans with an agent - good, bad, and ugly. Submitted to CHI 2021 found at https://drive.google.com/drive/folders/14_0zkttwbVr6pJnB_U4YIReGDLI6mCTX?usp=sharing

  5. Robe, P., Kuttal, S.K.: Designing an interactive pair programming partner submitted to TOCHI 2021 found at https://drive.google.com/drive/folders/1vIOdro0pg8C1jSB42KzYrDRKO0PVhqZ1?usp=sharing

  6. Stolcke, A., et al.: Dialogue act modeling for automatic tagging and recognition of conversational speech. Comput. Linguist. 26(3), 339–373 (2000)

    Google Scholar 

  7. Tugend, A.: Why is asking for help so difficult? N. Y. Times (2007)

    Google Scholar 

  8. PairBuddy Github. https://github.com/grubtub19/pairbuddy

  9. Abraham, A.: Gender and creativity.: an overview of psychological and neuroscientific literature. Brain Imaging Behav. 10(2), 609–618 (2016)

    Google Scholar 

  10. Baron-Cohen, S., Knickmeyer, R.C., Belmonte, M.K.: Sex differences in the brain: implications for explaining autism. Science 310(5749), 819–823 (2005)

    Google Scholar 

  11. LeClair, A., Eberhart, Z., McMillan, C.: Adapting neural text classification for improved software categorization. In: IEEE International Conference on Software Maintenance and Evolution (ICSME), Madrid, pp. 461–472 (2018)

    Google Scholar 

  12. Lin, W.-L., Hsu, K.-Y., Chen, H.-C., Wang, J.-W.: The relations of gender and personality traits on different creativities: a dual-process theory account. Psychol. Aesthet. Creativity Arts 6(2), 112–123 (2012)

    Google Scholar 

  13. Wood, A., Rodeghero, P., Armaly, A., McMillan, C.: Detecting speech act types in developer question/answer conversations during bug repair. In: Proceedings of the 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE 2018), pp. 491–502 (2018)

    Google Scholar 

  14. Woolley, W., Aggarwal, I., Malone, T.W.: Collective intelligence and group performance. Curr. Dir. Psychol. Sci. 24(6), 420–424 (2015)

    Google Scholar 

  15. Palmieri, D.W.: Knowledge management through pair programming, Master’s Thesis, Department of Computer Science, North Carolina State University, Raleigh, NC (2002)

    Google Scholar 

  16. Williams, L., McDowell, C., Nagappan, N., Fernald, J., Werner, L.: Building pair programming knowledge through a family of experiments. In: 2003 International Symposium on Empirical Software Engineering, pp. 143–152 (2003)

    Google Scholar 

  17. Williams, L., Kessler, R.: Pair Programming Illuminated. Addison-Wesley Longman Publishing Co., Inc., Boston (2002)

    Google Scholar 

  18. de la Barra, C.L., Crawford, B.: Fostering creativity thinking in agile software development. In: Holzinger, A. (ed.) USAB 2007. LNCS, vol. 4799, pp. 415–426. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76805-0_37

    Chapter  Google Scholar 

  19. Belshee, A.: Promiscuous pairing and beginner’s mind: embrace inexperience, pp. 125–131 (2005)

    Google Scholar 

  20. Cockburn, A., Williams, L.: Extreme Programming Examined. Addison-Wesley Longman Publishing Co., Inc., Boston. Ch. The Costs and Benefits of Pair Programming, pp. 223–243 (2001)

    Google Scholar 

  21. DeMarco, T., Lister, T.: Peopleware: Productive Projects and Teams. Dorset House Publishing Co., Inc., New York (1987)

    Google Scholar 

  22. Zieris, F., Prechelt, L.: On knowledge transfer skill in pair programming. In: Proceedings of the 8th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement, ESEM 2014, pp. 11:1–11:10. ACM, New York (2014)

    Google Scholar 

  23. McDowell, C., Werner, L., Bullock, H., Fernald, J.: The effects of pair-programming on performance in an introductory programming course. In: Proceedings of the 33rd SIGCSE Technical Symposium on Computer Science Education. SIGCSE, pp. 38–42. ACM, New York (2002)

    Google Scholar 

  24. Katira, N., et al.: On understanding compatibility of student pair programmers. SIGCSE Bull. 36(1), 7–11 (2004)

    Google Scholar 

  25. McDowell, C., Werner, L., Bullock, H.E., Fernald, J.: The impact of pair programming on student performance, perception and persistence. In: Proceedings of the 25th International Conference on Software Engineering, ICSE 2003, pp. 602–607. IEEE Computer Society, Washington, DC (2003)

    Google Scholar 

  26. Williams, L., Wiebe, E., Yang, K., Ferzli, M., Miller, C.: In support of pair programming in the introductory computer science course. Comput. Sci. Educ. 12, 197–212 (2002)

    Google Scholar 

  27. Ruvalcaba, O., Werner, L., Denner, J.: Observations of pair programming: variations in collaboration across demographic groups. In: Proceedings of the 47th ACM Technical Symposium on Computing Science Education, SIGCSE, pp. 90–95. ACM, New York (2016)

    Google Scholar 

  28. Werner, L.L., Hanks, B., McDowell, C.: Pair-programming helps female computer science students. J. Educ. Resour. Comput. 4(1) (2004)

    Google Scholar 

  29. Celepkolu, M., Boyer, K.E.: Thematic analysis of students’ reflections on pair programming in CS1. In: Proceedings of the 49th ACM Technical Symposium on Computer Science Education, SIGCSE, pp. 771–776. ACM, New York (2018)

    Google Scholar 

  30. Rodríguez, F.J., Price, K.M., Boyer, K.E.: Exploring the pair programming process: characteristics of effective collaboration. In: Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education, SIGCSE 2017, pp. 507–512. ACM, New York (2017)

    Google Scholar 

  31. Butler, J.: Revisiting bodies and pleasures: theory. Cult. Soc. 16(2), 11–20 (1999)

    Article  Google Scholar 

  32. West, C., Zimmerman, D.H.: Doing gender. Gend. Soc. 1(2), 125–151 (1987)

    Article  Google Scholar 

  33. Burnett, M., Peters, A., Hill, C., Elarief, N.: Finding gender-inclusiveness software issues with GenderMag: a field investigation. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, pp. 2586–2598. ACM (2016)

    Google Scholar 

  34. Charness, G., Gneezy, U.: Strong evidence for gender differences in risk taking. J. Econ. Behav. Organ. 83(1), 50–58 (2012)

    Article  Google Scholar 

  35. Mendez, C., et al.: Open-source barriers to entry, revisited: a sociotechnical perspective. In: Proceedings of the 40th International Conference on Software Engineering, pp. 1004–1015. ACM (2018)

    Google Scholar 

  36. Shekhar, A., Marsden, N.: Cognitive walkthrough of a learning management system with gendered personas. In: Proceedings of the 4th Conference on Gender & IT, pp. 191–198. ACM (2018)

    Google Scholar 

  37. Leavy, S.: Gender bias in artificial intelligence: the need for diversity and gender theory in machine learning. In: Proceedings of the 1st International Workshop on Gender Equality in Software Engineering, GE 2018, Gothenburg, Sweden, pp. 14–16. Association for Computing Machinery, NewYork (2018)

    Google Scholar 

  38. Arisholm, E., Gallis, H., Dybå, T., Sjoberg, D.I.K.: Evaluating pair programming with respect to system complexity and programmer expertise. IEEE Tran. Softw. Eng. 33(2), 65–86 (2007)

    Google Scholar 

  39. Falkner, K., Falkner, N., Vivian, R.: Collaborative learning and anxiety: a phenomenographic study of collaborative learning activities. In: Proceedings of the 44th ACM Technical Symposium on Computer Science Education, pp. 227–232 (2013)

    Google Scholar 

  40. Virtual Assistant [n.d.]. Amazon Alexa. https://developer.amazon.com/en-US/alexa

  41. Virtual Assistant [n.d.]. Apple Siri. https://www.apple.com/siri/

  42. Virtual Assistant [n.d.]. Google Assistant. https://assistant.google.com/

  43. Social Bot [n.d.]. Cleverbot. https://www.cleverbot.com/

  44. Social Bot [n.d.]. Mitsuku. https://www.pandorabots.com/mitsuku/

  45. Social Bot [n.d.]. SAP Conversational AI. https://www.sap.com/products/conversational-ai.html

  46. Social Bot [n.d.]. Xiaoice AI Assistant. https://www.digitaltrends.com/cool-tech/xiaoice-microsoft-future-of-ai-assistants/

  47. Stolcke, A., et al.: Dialogue act modeling for automatic tagging and recognition of conversational speech. Comput. Linguist. 26(3), 339–373 (2000)

    Article  Google Scholar 

  48. Jaccard, P.: Étude comparative de la distribution florale dans une portion des Alpes et des Jura. Bulletin de la Société vaudoise des sciences naturelles 37, 547–579 (1901)

    Google Scholar 

  49. Wentzel, K.R., Watkins, D.E.: Peer relationships and collaborative learning as contexts for academic enablers. Sch. Psychol. Rev. 31(3), 366–377 (2002)

    Article  Google Scholar 

  50. Fiske, S.T., Fiske, E.H.P.P.S.T., Taylor, S.E.: Social Cognition. McGraw-Hill, New York City

    Google Scholar 

  51. Kuttal, S.K., Ong, B., Kwasny, K., Robe, P.: Trade-offs for substituting a human with an agent in a pair programming context: the good, the bad, and the ugly. In: Proceedings of the conference on Human Factors in Computing, CHI (2021)

    Google Scholar 

  52. Cuadrado, I., Navas, M.M.D., Molero, F., Ferrer, E., Morales, J.F.: Gender differences in leadership styles as a function of leader and subordinates sex and type of organization. J. Appl. Soc. Psychol. 42, 3083–3113 (2012)

    Google Scholar 

  53. Yang, T., Aldrich, H.E.: Whos the boss? Explaining gender inequality in entrepreneurial teams. Am. Sociol. Rev. 79(2), 303–327 (2014)

    Google Scholar 

  54. Baheti, P., Gehringer, E., Stotts, D.: Exploring the efficacy of distributed pair programming. In: Wells, D., Williams, L. (eds.) XP/Agile Universe 2002. LNCS, vol. 2418, pp. 208–220. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45672-4_20

    Chapter  MATH  Google Scholar 

  55. Duque, R., Bravo, C.: Analyzing work productivity and program quality in collaborative programming. In: Proceedings of the 2008 The Third International Conference on Software Engineering Advances, pp. 270–276. IEEE Computer Society, Washington, DC (2008)

    Google Scholar 

  56. Hanks, B.: Empirical evaluation of distributed pair programming. Int. J. Hum Comput Stud. 66, 530–544 (2008)

    Article  Google Scholar 

  57. Compeau, D.R., Higgins, C.A.: Computer self-efficacy: development of a measure and initial test. MIS Q. 19(2), 189–211 (1995)

    Google Scholar 

  58. Lewis, C.: Using the “Thinking-Aloud” Method in Cognitive Interface Design. IBM T.J. Watson Research Center, Yorktown Heights (1982)

    Google Scholar 

  59. Jones, D.L., Fleming, S.D.: What use is a backseat driver? A qualitative investigation of pair programming. In: Proceedings of IEEE Symposium on Visual Languages and Human-Centric Computing, VL/HCC, pp. 103–110 (2013)

    Google Scholar 

  60. Morae 2019. Morae. http://www.techsmith.com/morae.asp

  61. Bickmore, T., Cassell, J.: Relational agents: a model and implementation of building user trust. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI 2001), Seattle, Washington, USA, pp. 396–403. ACM, New York (2001)

    Google Scholar 

  62. Bradley, J., Benyon, D., Mival, O., Webb, N.: Wizard of Oz experiments and companion dialogues. In: Proceedings of the 24th BCS Interaction Specialist Group Conference, pp. 117–123. British Computer Society (2010)

    Google Scholar 

  63. Dahlbäck, N., Jönsson, A., Ahrenberg, L.: Wizard of Oz studies—why and how. Knowl. Based Syst. 6(4), 258–266 (1993)

    Article  Google Scholar 

  64. Wargnier, P., Carletti, G., Laurent-Corniquet, Y., Benveniste, S., Jouvelot, P., Rigaud, A.-S.: Field evaluation with cognitively-impaired older adults of attention management in the embodied conversational agent Louise. In: 2016 IEEE International Conference on Serious Games and Applications for Health (SeGAH), pp. 1–8. IEEE (2016)

    Google Scholar 

  65. Software Application [n.d.]. Facerig. https://facerig.com/

  66. Riek, L.D.: Wizard of Oz studies in HRI: a systematic review and new reporting guidelines. J. Hum. Robot Interact. 1(1), 119–136 (2012)

    Article  Google Scholar 

  67. Ashktorab, Z., Jain, M., Liao, Q.V., Weisz, J.D.: Resilient chatbots: repair strategy preferences for conversational breakdowns. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (CHI 2019), Glasgow, Scotland, UK. Association for Computing Machinery, New York (2019). Article no. 254, 12 pages

    Google Scholar 

  68. Lopatovska, I., Williams, H.: Personification of the Amazon Alexa: BFF or a mindless companion. In: Proceedings of the 2018 Conference on Human Information Interaction & Retrieval (CHIIR 2018), New Brunswick, NJ, USA, pp. 265–268. Association for Computing Machinery, New York (2018)

    Google Scholar 

  69. Sproull, L., Subramani, M., Kiesler, S., Walker, J.H., Waters, K.: When the interface is a face. Hum. Comput. Interact. 11(2), 97–124 (1996)

    Article  Google Scholar 

  70. Zalake, M., Woodward, J., Kapoor, A., Lok, B.: Assessing the impact of virtual human’s appearance on users’ trust levels. In: Proceedings of the 18th International Conference on Intelligent Virtual Agents (IVA 2018), Sydney, NSW, Australia, pp. 329–330. Association for Computing Machinery, New York (2018)

    Google Scholar 

  71. Gratch, J., Wang, N., Gerten, J., Fast, E., Duffy, R.: Creating rapport with virtual agents. In: Pelachaud, C., Martin, J.-C., André, E., Chollet, G., Karpouzis, K., Pelé, D. (eds.) IVA 2007. LNCS (LNAI), vol. 4722, pp. 125–138. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74997-4_12

    Chapter  Google Scholar 

  72. Hasegawa, D., Cassell, J., Araki, K.: The Role of Embodiment and Perspective in Direction-Giving Systems (2010)

    Google Scholar 

  73. Shamekhi, A., Liao, Q.V., Wang, D., Bellamy, R.K., Erickson, T.: Face value? Exploring the effects of embodiment for a group facilitation agent. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, CHI 2018, Montreal QC, Canada, pp. 1–13. Association for Computing Machinery, New York (2018)

    Google Scholar 

  74. Takeuchi, A., Naito, T.: Situated facial displays: towards social interaction. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI 1995), Denver, Colorado, USA, pp. 450–455. ACM Press/Addison-Wesley Publishing Co., New York (1995)

    Google Scholar 

  75. van Mulken, S., André, E., Müller, J.: The persona effect: how substantial is it?. In: Johnson, H., Nigay, L., Roast, C. (eds.) People and Computers XIII. Springer, London (1998). https://doi.org/10.1007/978-1-4471-3605-7_4

  76. Yee, N., Bailenson, J.N., Rickertsen, K.: A meta-analysis of the impact of the inclusion and realism of human-like faces on user experiences in interfaces. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI 2007), San Jose, California, USA, pp. 1–10. ACM, New York (2007)

    Google Scholar 

  77. Saros [n.d.]. Saros Project. https://www.saros-project.org/

  78. Kahn, P.H., et al.: Design patterns for sociality in human-robot interaction. In: Proceedings of the 3rd ACM/IEEE International Conference on Human Robot Interaction (HRI 2008), Amsterdam, The Netherlands, pp. 97–104. Association for Computing Machinery, New York (2008)

    Google Scholar 

  79. Jain, M., Kumar, P., Bhansali, I., Liao, Q.V., Truong, K., Patel, S.: Farm chat: a conversational agent to answer farmer queries. In: Proceedings of the ACM Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 2, no. 4 (2018). Article no. 170, 22 pages

    Google Scholar 

  80. Jain, M., Kumar, P., Kota, R., Patel, S.N.: Evaluating and informing the design of chatbots. In: Proceedings of the 2018 Designing Interactive Systems Conference, pp. 895–906 (2018)

    Google Scholar 

  81. Luger, E., Sellen, A.: “Like having a really bad PA” the gulf between user expectation and experience of conversational agents. In: Proceedings of the 2016 CHI conference on human factors in computing systems, pp. 5286–5297 (2016)

    Google Scholar 

  82. Amabile, T.M., Pratt, M.G.: The dynamic componential model of creativity and innovation in organizations: making progress, making meaning. Res. Organ. Behav. 36, 157–183 (2016)

    Google Scholar 

  83. Armstrong, M.: Armstrong’s Handbook of Reward Management Practice: Improving Performance Through Reward, 12 edn. Kogan Page Publishers (2012)

    Google Scholar 

  84. Cerasoli, C.P., Nicklin, J.M., Ford, M.T.: Intrinsic motivation and extrinsic incentives jointly predict performance: a 40-year meta-analysis. Psychol. Bull. 140(4), 980 (2014)

    Google Scholar 

  85. Deci, E.L., Olafsen, A.H., Ryan, R.M.: Self-determination theory in work organizations: The state of a science. Ann. Rev. Organ. Psychol. Organ. Behav. 4, 19–43 (2017)

    Article  Google Scholar 

  86. Fischer, C., Malycha, C.P., Schafmann, E.: The influence of intrinsic motivation and synergistic extrinsic motivators on creativity and innovation. Frontiers Psychol. 10, 137 (2019)

    Article  Google Scholar 

  87. Day, M., Penumala, M.R., Gonzalez-Sanchez, J.: Annete: an intelligent tutoring companion embedded into the eclipse IDE. In: 2019 IEEE First International Conference on Cognitive Machine Intelligence (CogMI), pp. 71–80 (2019)

    Google Scholar 

  88. Keivanloo, I., Rilling, J., Zou, Y.: Spotting working code examples. In: Proceedings of the 36th International Conference on Software Engineering, Hyderabad, India, pp. 664–675. Association for Computing Machinery, New York (2014)

    Google Scholar 

  89. Kim, K., Kim, D., Bissyandé, T.F., Choi, E., Li, L., Klein, J., Traon, Y.L.: FaCoY: a code-to-code search engine. In: Proceedings of the 40th International Conference on Software Engineering, ICSE 2018, Gothenburg, Sweden, pp. 946–957. Association for Computing Machinery, New York (2018)

    Google Scholar 

  90. Niu, H., Keivanloo, I., Zou, Y.: Learning to rank code examples for code search engines. Empirical Softw. Eng. 22(1), 259–291 (2017)

    Article  Google Scholar 

  91. Raghothaman, M., Wei, Y., Hamadi, Y.: SWIM: synthesizing what i mean - code search and idiomatic snippet synthesis. In: 2016 IEEE/ACM38th International Conference on Software Engineering, ICSE, pp. pp. 357–367 (2016)

    Google Scholar 

  92. Zhi, R., Marwan, S., Dong, Y., Lytle, N., Price, T.W., Barnes, T.: Toward data-driven example feedback for novice programming. In: Proceedings of the 12th International Conference on Educational Data Mining (2019)

    Google Scholar 

  93. Jörg Spieler. [n.d.]. UCDetector. http://www.ucdetector.org/

  94. Liu, D., Marcus, A., Poshyvanyk, D., Rajlich, V.: Feature location via information retrieval based filtering of a single scenario execution trace. In: Proceedings of ASE 2007 - 2007 ACM/IEEE International Conference on Automated Software Engineering, pp. 234–243 (2007)

    Google Scholar 

  95. Savage, T., Revelle, M., Poshyvanyk, D.: FLAT3: feature location and textual tracing tool. In: Proceedings of 2010 ACM/IEEE 32nd International Conference on Software Engineering, vol. 2. pp. 255–258 (2010)

    Google Scholar 

  96. Ali, S., Briand, L.C., Hemmati, H., Panesar-Walawege, R.K.: A systematic review of the application and empirical investigation of search-based test case generation. IEEE Trans. Softw. Eng. 36(6), 742–762 (2010)

    Article  Google Scholar 

  97. Meiliana, Septian, I., Alianto, R.S., Daniel, Gaol, F.L.: Automated test case generation from UML activity diagram and sequence diagram using depth first search algorithm. Procedia Comput. Sci. 116, 629 – 637 (2017). http://www.sciencedirect.com/science/article/pii/S1877050917320732. Discovery and innovation of computer science technology in artificial intelligence era: The 2nd International Conference on Computer Science and Computational Intelligence (ICCSCI 2017)

  98. Mariano, M.M., Souza, É.F., Endo, A.T., Vijaykumar, N.L.: Analyzing graph-based algorithms employed to generate testcases from finite state machines (2019)

    Google Scholar 

  99. Rane, P.: Automatic Generation of Test Cases for Agile using Natural Language Processing (2017)

    Google Scholar 

  100. Gerdes, A., Heeren, B., Jeuring, J., van Binsbergen, L.T.: Ask-Elle: an adaptable programming tutor for Haskell giving automated feedback. Int. J. Artif. Intell. Educ. 27 (2016)

    Google Scholar 

  101. Brown, T.: Change by Design: How Design Thinking Transforms Organizations and Inspires Innovation. Harper Business. (2009)

    Google Scholar 

  102. Berland Edelman and Inc. 2010. Creativity and education.: Why it matters. http://www.adobe.com/aboutadobe/pressroom/pdfs/Adobe_Creativity_and_Education_Why_It_Matters_study.pdf. Accessed 18 Sept 2019

  103. Levine, M.: Effective Problem Solving. Prentice Hall, Hoboken (1988)

    Google Scholar 

  104. Liu, Z., Schonwetter, D.J.: Teaching creativity in engineering. Int. J. Eng. Educ. 20(5), 801–808 (2004)

    Google Scholar 

  105. Polya, G.: How to Solve It.: A New Aspect of Mathematical Method, vol. 85. Princeton University Press (2004)

    Google Scholar 

  106. Tony, W., Robert, A.C.: Creating Innovators: The Making of Young People Who Will Change the World. Simon and Schuster, New York (2012)

    Google Scholar 

  107. Wickelgren, W.A.: How to Solve Problems: Elements of a Theory of Problems and Problem Solving. WH Freeman, San Francisco (1974)

    Google Scholar 

  108. Zhao, Y.: World Class Learners: Educating Creative and Entrepreneurial Students. Corwin Press, Thousand Oaks (2012)

    Google Scholar 

  109. Tsuei, M.: Learning behaviours of low-achieving children’s mathematics learning in using of helping tools in a synchronous peer-tutoring system. Interact. Learn. Environ. 25(2), 147–161 (2017)

    Article  Google Scholar 

  110. Guilford, J.P.: Intelligence, Creativity, and Their Educational Implications. R. R. Knapp (1968) https://books.google.com/books?id=WE8kAQAAMAAJ

  111. Robertson, T., et al.: Impact of interruption style on end-user debugging. In: ACM Conference on Human Factors in Computing Systems, pp. 287–294 (2004)

    Google Scholar 

  112. Wilson, A., et al.: Harnessing curiosity to increase correctness in end-user programming, pp. 305–312 (2003)

    Google Scholar 

  113. Knutsen, D., Le Bigot, L.: The influence of reference acceptance and reuse on conversational memory traces. J. Exp. Psychol. Learn. Mem. Cogn. 4 (2014)

    Google Scholar 

  114. Knutsen, D., Le Bigot, L., Ros, C.: Explicit feedback from users attenuates memory biases in human-system dialogue. Int. J. Hum. Comput. Stud. 97, 77–87 (2017). http://www.sciencedirect.com/science/article/pii/S1071581916301045

  115. Knutsen, D., Ros, C., Le Bigot, L.: Generating references in naturalistic face-to-face and phone-mediated dialog settings. Top. Cogn. Sci. 8 (2016)

    Google Scholar 

  116. Sharma, R., Gulia, S., Biswas, K.K.: Automated generation of activity and sequence diagrams from natural language requirements. In: 2014 9th International Conference on Evaluation of Novel Approaches to Software Engineering, ENASE, pp. 1–9 (2014)

    Google Scholar 

  117. TeamViewer 20219. Teamviewer. https://www.teamviewer.com/

  118. Eclipse 2019. Eclipse Foundation https://www.eclipse.org/ide

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Kaur Kuttal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kuttal, S.K., Sedhain, A., AuBuchon, J. (2021). Designing a Gender-Inclusive Conversational Agent For Pair Programming: An Empirical Investigation. In: Degen, H., Ntoa, S. (eds) Artificial Intelligence in HCI. HCII 2021. Lecture Notes in Computer Science(), vol 12797. Springer, Cham. https://doi.org/10.1007/978-3-030-77772-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77772-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77771-5

  • Online ISBN: 978-3-030-77772-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics