Human-Robot Interactions Design for Interview Process: Needs-Affordances-Features Perspective | SpringerLink
Skip to main content

Human-Robot Interactions Design for Interview Process: Needs-Affordances-Features Perspective

  • Conference paper
  • First Online:
HCI in Business, Government and Organizations (HCII 2021)

Abstract

Human robot interaction (HRI) offers potential in fulfilling the social needs of humans specifically, in the context of an interview setting. While human robot interaction has proven potentials to provide relatively measurable outcomes in experimentation, applications in real life are limited mainly due to primitive HRI design and implementation. Research in HRI is thus the necessary first step to the diffusion of robots and robotic technologies into social life. This study presents the results a case study on HRI design for a formal interview process. The findings are presented in a framework that elucidates the key expected robot affordances—action possibilities afforded by a humanoid robot—and their relationships with humans in the interactive interview context. This framework development has been informed by the Needs-Affordances-Features perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andrist, S., Tan, X.Z., Gleicher, M., Mutlu, B.: Conversational gaze aversion for humanlike robots. In: Proceedings of the 2014 ACM/IEEE International Conference on Human-Robot Interaction, pp. 25–32. University of Wisconsin-Madison Department of Computer Sciences (2014). https://doi.org/10.1145/2559636.2559666

  2. Bartneck, C., Belpaeme, T., Eyssel, F., Kanda, T., Keijsers, M., Šabanović, S.: Human-Robot Interaction: An Introduction. Cambridge University Press, Cambridge (2019)

    Google Scholar 

  3. Deci, E., Vallerand, R., Pelletier, L., Ryan, R.: Motivation and education: the self-determination perspective. Educ. Psychol. 26(3–4), 325–346 (1991). https://doi.org/10.1080/00461520.1991.9653137

    Article  Google Scholar 

  4. Edwards, A., Omilion-Hodges, L., Edwards, C.: How do patients in a medical interview perceive a robot versus human physician? In: Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, HRI 2017, Vienna, Austria, pp. 109–110. Companion (2017)

    Google Scholar 

  5. Elkins, A., Gupte, A., Cameron, L.: Humanoid Robots as Interviewers for Automated Credibility Assessment. Artificial Intelligence Lab. San Diego State University, USA (2018)

    Google Scholar 

  6. Evans, S.K., Pearce, K.E., Vitak, J., Treem, J.W.: Explicating affordances: a conceptual framework for understanding affordances in communication research. J. Comput.-Mediat. Commun. 22(1), 35–52 (2016)

    Article  Google Scholar 

  7. Fallon, M., et al.: An architecture for online affordance-based perception and whole-body planning. J. Field Robot. 32(2), 229–254 (2015). https://doi.org/10.21236/ada602904

  8. Fayard, A.-L., Weeks, J.: Affordances for practice. Inf. Organ. 24(4), 236–249 (2014). https://doi.org/10.1016/j.infoandorg.2014.10.001

    Article  Google Scholar 

  9. Fox, J., Gambino, A.: Relationship development with humanoid social robots: applying interpersonal theories to human/robot interaction. Cyberpsychol. Behav. Soc. Netw. 1–5 (2021). https://doi.org/10.1089/cyber.2020.0181

  10. Ghazali, A.S., Ham, J., Barakova, E., Markopoulos, P.: Assessing the effect of persuasive robots interactive social cues on users’ psychological reactance, liking, trusting beliefs and compliance. Adv. Robot. 33(7–8), 325–337 (2019). https://doi.org/10.1080/01691864.2019.1589570

    Article  Google Scholar 

  11. Hancock, P.A., Billings, D.R., Schaefer, K.E., Chen, J.Y., de Visser, E.J., Parasuraman, R.: A meta-analysis of factors affecting trust in human-robot interaction. Hum. Factors: J. Hum. Factors Ergon. Soc. 53(5), 517–527 (2011). https://doi.org/10.1177/0018720811417254

    Article  Google Scholar 

  12. Harris, J., Sharlin, E.: Exploring the affect of abstract motion in social human-robot interaction. RO-MAN (2011). https://doi.org/10.1109/roman.2011.6005254

  13. Jamone, L., et al.: Affordances in psychology, neuroscience, and robotics: a survey. IEEE Trans. Cogn. Dev. Syst. 4–25 (2018). https://doi.org/10.1109/tcds.2016.2594134

  14. Kahn, P.H., et al.: Will people keep the secret of a humanoid robot? In: Proceedings of the Tenth Annual ACM/IEEE International Conference on Human-Robot Interaction, HRI 2015, Portland, Oregon, pp. 173–180 (2015)

    Google Scholar 

  15. Kaptelinin, V., Nardi, B.: Affordances in HCI: toward a mediated action perspective. In: Proceedings on Human Factors in Computing Systems, CHI 2012, Austin, Texas, pp. 967–975 (2012)

    Google Scholar 

  16. Karahanna, E., Xin Xu, S., Xu, Y., Zhang, N.: The needs–affordances–features perspective for the use of social media. MIS Q. 42(3), 737–756 (2018). https://doi.org/10.25300/MISQ/2018/11492

    Article  Google Scholar 

  17. Khan, A.N., Ihalage, A., Ma, Y., Liu, B., Liu, Y., et al.: Deep learning framework for subject-independent emotion detection using wireless signals. PLOS ONE 16(2), 1–16 (2021). https://doi.org/10.1371/journal.pone.0242946

    Article  Google Scholar 

  18. Onnasch, L., Roesler, E.: A taxonomy to structure and analyze human–robot interaction. Int. J. Soc. Robot. (2020). https://doi.org/10.1007/s12369-020-00666-5

  19. Onyeulo, E.B., Gandhi, V.: What makes a social robot good at interacting with humans? Information 11(43), 1–13 (2020). https://doi.org/10.3390/info11010043

    Article  Google Scholar 

  20. Ötting, S.K., Masjutin, L., Steil, J.J., Maier, G.W.: Let’s work together: a meta-analysis on robot design features that enable successful human–robot (2020)

    Google Scholar 

  21. Interaction at Work. Hum. Factors: J. Hum. Factors Ergon. Soc. 1–24 (2020). https://doi.org/10.1177/0018720820966433

  22. Pandey, A.K., Alami, R.: Affordance graph: a framework to encode perspective taking and effort based affordances for day-to-day human-robot interaction. In: IEEE/RSJ International Conference on Intelligent Robots and Systems 2013, IROS, Tokyo, Japan, pp. 2180–2187 (2013). https://doi.org/10.1109/iros.2013.6696661

  23. Pandey, A.K., Gelin, R.: Pepper: the first machine of its kind a mass-produced sociable humanoid. In: IEEE/RSJ International Conference on Intelligent Robots and Systems 2013, IROS, Tokyo, Japan, pp. 2180–2187 (2018). https://doi.org/10.1109/iros.2013.6696661

  24. Shu, T., Ryoo, M.S., Zhu, S.-C.: Learning social affordance for human-robot interaction. In: 25th International Joint Conference on Artificial Intelligence, IJCAI 2016, New York, pp. 3454–3461 (2016)

    Google Scholar 

  25. Vallverdú, J., Trovato, G.: Emotional affordances for human–robot interaction. Adapt. Behav. 24(5), 320–334 (2016). https://doi.org/10.1177/1059712316668238

    Article  Google Scholar 

  26. Vallverdú, J., Trovato, G., Jamone, L.: Allocentric emotional affordances in HRI: the multimodal binding. Multimodal Technol. Interact. 2(78), 1–20 (2018). https://doi.org/10.20944/preprints201808.0312.v1

  27. Wang, S.M., Cheng, W.M.: Design thinking for developing a case-based reasoning emotion-sensing robot for interactive interview. In: Symposium on Emerging Research from Asia and on Asian Contexts and Cultures, CHI 2020, Hawaii, pp. 13–16 (2020). https://doi.org/10.1145/3391203.3391205

  28. Zheng, J., Jarvenpaa, S.L.: (PDF) [Internet]: Thinking Technology as Human: Affordances, Technology Features, and Egocentric Biases in Technology Anthropomorphism. ResearchGate (2020). https://www.researchgate.net/publication/347484661_Thinking_Technology_as_Human_Affordances_Technology_Features_and_Egocentric_Biases_in_Technology_Anthropomorphism. Accessed 21 Feb 2021

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lance Dean Cameron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zaballa, K.N.H., Cameron, L.D., Lugo, A.S. (2021). Human-Robot Interactions Design for Interview Process: Needs-Affordances-Features Perspective. In: Nah, F.FH., Siau, K. (eds) HCI in Business, Government and Organizations. HCII 2021. Lecture Notes in Computer Science(), vol 12783. Springer, Cham. https://doi.org/10.1007/978-3-030-77750-0_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77750-0_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77749-4

  • Online ISBN: 978-3-030-77750-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics