KOBE: Cloud-Native Open Benchmarking Engine for Federated Query Processors | SpringerLink
Skip to main content

KOBE: Cloud-Native Open Benchmarking Engine for Federated Query Processors

  • Conference paper
  • First Online:
The Semantic Web (ESWC 2021)

Abstract

In the SPARQL query processing community, as well as in the wider databases community, benchmark reproducibility is based on releasing datasets and query workloads. However, this paradigm breaks down for federated query processors, as these systems do not manage the data they serve to their clients but provide a data-integration abstraction over the actual query processors that are in direct contact with the data. As a consequence, benchmark results can be greatly affected by the performance and characteristics of the underlying data services. This is further aggravated when one considers benchmarking in more realistic conditions, where internet latency and throughput between the federator and the federated data sources is also a key factor. In this paper we present KOBE, a benchmarking system that leverages modern containerization and Cloud computing technologies in order to reproduce collections of data sources. In KOBE, data sources are formally described in more detail than what is conventionally provided, covering not only the data served but also the specific software that serves it and its configuration as well as the characteristics of the network that connects them. KOBE provides a specification formalism and a command-line interface that completely hides from the user the mechanics of provisioning and orchestrating the benchmarking process on Kubernetes-based infrastructures; and of simulating network latency. Finally, KOBE automates the process of collecting and comprehending logs, and extracting and visualizing evaluation metrics from these logs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Previously demonstrated in ISWC 2020, with extended abstract proceedings [6].

  2. 2.

    See https://github.com/semagrow/kobe.

  3. 3.

    cf. https://kubernetes.io.

  4. 4.

    cf. https://istio.io.

  5. 5.

    cf. https://www.elastic.co/elasticsearch.

  6. 6.

    cf. https://www.fluentd.org.

  7. 7.

    cf. https://www.elastic.co/kibana.

  8. 8.

    https://semagrow.github.io/kobe/references/api.

  9. 9.

    cf. https://virtuoso.openlinksw.com.

  10. 10.

    cf. http://strabon.di.uoa.gr.

  11. 11.

    https://semagrow.github.io/kobe/use/create_benchmark.

  12. 12.

    https://semagrow.github.io/kobe/use/tune_network.

  13. 13.

    https://semagrow.github.io/kobe/use/create_experiment.

  14. 14.

    https://semagrow.github.io/kobe/extend/add_evaluator.

  15. 15.

    https://semagrow.github.io/kobe/extend/add_metrics.

  16. 16.

    https://semagrow.github.io/kobe/extend/add_dataset_server.

  17. 17.

    https://semagrow.github.io/kobe/extend/add_federator.

  18. 18.

    Specifically, see the first step of the walk-through for adding a new federator. See also details about collecting logs to compute evaluation metrics https://semagrow.github.io/kobe/extend/support_metrics.

References

  1. Acosta, M., Vidal, M.-E., Sure-Vetter, Y.: Diefficiency metrics: measuring the continuous efficiency of query processing approaches. In: d’Amato, C., et al. (eds.) ISWC 2017, Part II. LNCS, vol. 10588, pp. 3–19. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68204-4_1

    Chapter  Google Scholar 

  2. Charalambidis, A., Troumpoukis, A., Konstantopoulos, S.: SemaGrow: optimizing federated SPARQL queries. In: Proceedings of the 11th International Conference on Semantic Systems (SEMANTiCS 2015), Vienna, Austria, Sept 2015 (2015)

    Google Scholar 

  3. Garbis, G., Kyzirakos, K., Koubarakis, M.: Geographica: a benchmark for geospatial RDF stores (long version). In: Alani, H., et al. (eds.) ISWC 2013, Part II. LNCS, vol. 8219, pp. 343–359. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41338-4_22

    Chapter  Google Scholar 

  4. Görlitz, O., Staab, S.: SPLENDID: SPARQL endpoint federation exploiting VOID descriptions. In: Proceedings of the 2nd International Workshop on Consuming Linked Data (COLD 2011), vol. 782, Bonn, Germany, Oct 2011. CEUR (2011)

    Google Scholar 

  5. Guo, Y., Pan, Z., Heflin, J.: LUBM: a benchmark for OWL knowledge base systems. Web Semant. 3(2) (2005). https://doi.org/10.1016/j.websem.2005.06.005

  6. Kostopoulos, C., Mouchakis, G., Prokopaki-Kostopoulou, N., Troumpoukis, A., Charalambidis, A., Konstantopoulos, S.: KOBE: Cloud-native open benchmarking engine for federated query processors. Posters & Demos Session, ISWC 2020 (2020)

    Google Scholar 

  7. Ngonga Ngomo, A.C., Röder, M.: HOBBIT: Holistic benchmarking for big linked data. In: Processings of the ESWC 2016 EU Networking Session (2016)

    Google Scholar 

  8. Saleem, M., Hasnain, A., Ngonga Ngomo, A.C.: BigRDFBench: A billion triples benchmark for SPARQL endpoint federation

    Google Scholar 

  9. Schmidt, M., Görlitz, O., Haase, P., Ladwig, G., Schwarte, A., Tran, T.: FedBench: a benchmark suite for federated semantic data query processing. In: Aroyo, L., et al. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 585–600. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25073-6_37

    Chapter  Google Scholar 

  10. Schwarte, A., Haase, P., Hose, K., Schenkel, R., Schmidt, M.: FedX: a federation layer for distributed query processing on linked open data. In: Antoniou, G., et al. (eds.) ESWC 2011, Part II. LNCS, vol. 6644, pp. 481–486. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21064-8_39

    Chapter  Google Scholar 

  11. Troumpoukis, A., et al.: Developing a benchmark suite for semantic web data from existing workflows. In: Proceedings of the Benchmarking Linked Data Workshop (BLINK), (ISWC 2016), Kobe, Japan, Oct 2016 (2016)

    Google Scholar 

  12. Troumpoukis, A., et al.: GeoFedBench: a benchmark for federated GeoSPARQL query processors. In: Proceedings Posters & Demos Session of ISWC 2020 (2020)

    Google Scholar 

  13. Verborgh, R., et al.: Triple pattern fragments: a low-cost knowledge graph interface for the web. J. Web Semant. 37–38, 184–206 (2016)

    Google Scholar 

Download references

Acknowledgments

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 825258. Please see http://earthanalytics.eu for more details.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stasinos Konstantopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kostopoulos, C., Mouchakis, G., Troumpoukis, A., Prokopaki-Kostopoulou, N., Charalambidis, A., Konstantopoulos, S. (2021). KOBE: Cloud-Native Open Benchmarking Engine for Federated Query Processors. In: Verborgh, R., et al. The Semantic Web. ESWC 2021. Lecture Notes in Computer Science(), vol 12731. Springer, Cham. https://doi.org/10.1007/978-3-030-77385-4_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77385-4_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77384-7

  • Online ISBN: 978-3-030-77385-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics