Towards a Privacy Conserved and Linked Open Data Based Device Recommendation in IoT | SpringerLink
Skip to main content

Towards a Privacy Conserved and Linked Open Data Based Device Recommendation in IoT

  • Conference paper
  • First Online:
Service-Oriented Computing – ICSOC 2020 Workshops (ICSOC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 12632))

Included in the following conference series:

  • 2232 Accesses

Abstract

Interconnecting Internet of Things (IoT) devices creates a network of services capable of working together to accomplish certain goals in different domains. The heterogeneous nature of IoT environments makes it critical to find devices that extend existing architectures and helps in reaching the desired goal; especially if we have to take into consideration data privacy. In this paper, we present a Linked Open Data (LOD) based approach to semantically annotate and recommend IoT devices while adding a layer of data security and privacy through implementing the SOLID (SOcial LInked Data) framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.w3.org/Protocols/.

  2. 2.

    https://www.w3.org/2001/sw/wiki/REST.

  3. 3.

    https://solidproject.org/.

  4. 4.

    https://www.w3.org/wiki/WebID.

  5. 5.

    https://github.com/FouadKom/lds.

  6. 6.

    https://www.onem2m.org/.

  7. 7.

    https://www.fiware.org/developers/catalogue/.

References

  1. Beltran, V., Ortiz, A.M., Hussein, D., Crespi, N.: A semantic service creation platform for social IoT (March 2014). https://doi.org/10.1109/WF-IoT.2014.6803173

  2. Chen, Y., Zhou, M., Zheng, Z., Chen, D.: Time-aware smart object recommendation in social internet of things. IEEE Internet Things J. 7(3), 2014–2027 (2020)

    Article  Google Scholar 

  3. Cheniki, N., Belkhir, A., Sam, Y., Messai, N.: LODS: a linked open data based similarity measure. In: 2016 IEEE 25th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE), Paris, France, pp. 229–234 (June 2016)

    Google Scholar 

  4. Chirila, S., Lemnaru, C., Dinsoreanu, M.: Semantic-based IoT device discovery and recommendation mechanism. In: 2016 IEEE 12th International Conference on Intelligent Computer Communication and Processing (ICCP), pp. 111–116 (2016)

    Google Scholar 

  5. Gyrard, A.: An architecture to aggregate heterogeneous and semantic sensed data. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 697–701. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38288-8_54

    Chapter  Google Scholar 

  6. Mecibah, R., Djamaa, B., Yachir, A., Aissani, M.: A scalable semantic resource discovery architecture for the internet of things. In: Demigha, O., Djamaa, B., Amamra, A. (eds.) CSA 2018. LNNS, vol. 50, pp. 37–47. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-98352-3_5

    Chapter  Google Scholar 

  7. Meymandpour, R., Davis, J.G.: Enhancing recommender systems using linked open data-based semantic analysis of items. In: 3rd Australasian Web Conference (AWC 2015), Sydney, Australia (27–30 January 2015)

    Google Scholar 

  8. Pahl, M., Liebald, S.: A modular distributed IoT service discovery. In: 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM), pp. 448–454 (2019)

    Google Scholar 

  9. Passant, A.: Measuring semantic distance on linking data and using it for resources recommendations. In: AAAI Spring Symposium: Linked Data Meets Artificial Intelligence, vol. 77, p. 123 (2010)

    Google Scholar 

  10. Pfisterer, D., et al.: Spitfire: toward a semantic web of things. IEEE Commun. Mag. 49(11), 40–48 (2011)

    Article  Google Scholar 

  11. Piao, G., Ara, S., Breslin, J.G.: Computing the semantic similarity of resources in DBpedia for recommendation purposes. In: Qi, G., Kozaki, K., Pan, J.Z., Yu, S. (eds.) JIST 2015. LNCS, vol. 9544, pp. 185–200. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31676-5_13

    Chapter  Google Scholar 

  12. Saleem, Y., Crespi, N., Rehmani, M.H., Copeland, R., Hussein, D., Bertin, E.: Exploitation of social IoT for recommendation services. In: 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT), pp. 359–364 (2016)

    Google Scholar 

  13. Zorgati, H., Djemaa, R.B., Amor, I.A.B.: Service discovery techniques in internet of things: a survey. In: 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), pp. 1720–1725 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fouad Komeiha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Komeiha, F., Cheniki, N., Sam, Y., Jaber, A., Messai, N., Devogele, T. (2021). Towards a Privacy Conserved and Linked Open Data Based Device Recommendation in IoT. In: Hacid, H., et al. Service-Oriented Computing – ICSOC 2020 Workshops. ICSOC 2020. Lecture Notes in Computer Science(), vol 12632. Springer, Cham. https://doi.org/10.1007/978-3-030-76352-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76352-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76351-0

  • Online ISBN: 978-3-030-76352-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics