Abstract
Non-linear filtering approaches allow to obtain decompositions of images with respect to a non-classical notion of scale. The associated inverse scale space flow can be obtained using the classical Bregman iteration applied to a convex, absolutely one-homogeneous regularizer. In order to extend these approaches to general energies with non-convex data term, we apply the Bregman iteration to a lifted version of the functional with sublabel-accurate discretization. We provide a condition for the subgradients of the regularizer under which this lifted iteration reduces to the standard Bregman iteration. We show experimental results for the convex and non-convex case.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations, vol. 147. Springer, New York (2006). https://doi.org/10.1007/978-0-387-44588-5
Benning, M., Burger, M.: Ground states and singular vectors of convex variational regularization methods. arXiv preprint arXiv:1211.2057 (2012)
Burger, M., Gilboa, G., Moeller, M., Eckardt, L., Cremers, D.: Spectral decompositions using one-homogeneous functionals. SIAM J. Imag. Sci. 9(3), 1374–1408 (2016)
Burger, M., Gilboa, G., Osher, S., Xu, J., et al.: Nonlinear inverse scale space methods. Commun. Math. Sci. 4(1), 179–212 (2006)
Burger, M., Eckardt, L., Gilboa, G., Moeller, M.: Spectral representations of one-homogeneous functionals. In: Aujol, J.-F., Nikolova, M., Papadakis, N. (eds.) SSVM 2015. LNCS, vol. 9087, pp. 16–27. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18461-6_2
Cai, J., Osher, S., Shen, Z.: Linearized Bregman iterations for compressed sensing. Math. Comput. 78(267), 1515–1536 (2009)
Chambolle, A., Cremers, D., Pock, T.: A convex approach for computing minimal partitions (2008)
Chan, T.F., Esedoglu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math. 66(5), 1632–1648 (2006)
Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Proc. 10(2), 266–277 (2001)
Gilboa, G.: Semi-inner-products for convex functionals and their use in image decomposition. J. Math. Imag. Vis. 57(1), 26–42 (2017)
Gilboa, G.: A spectral approach to total variation. In: Kuijper, A., Bredies, K., Pock, T., Bischof, H. (eds.) SSVM 2013. LNCS, vol. 7893, pp. 36–47. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38267-3_4
Gilboa, G., Moeller, M., Burger, M.: Nonlinear spectral analysis via one-homogeneous functionals: overview and future prospects. J. Math. Imag. Vis. 56(2), 300–319 (2016)
Goldstein, T., Osher, S.: The split Bregman method for L1-regularized problems. SIAM J. Imag. Sci. 2(2), 323–343 (2009)
Hoeltgen, L., Breuß, M.: Bregman iteration for correspondence problems: A study of optical flow. arXiv preprint arXiv:1510.01130 (2015)
Ishikawa, H.: Exact optimization for Markov random fields with convex priors. Patt. Anal. Mach. Intell. 25(10), 1333–1336 (2003)
Ishikawa, H., Geiger, D.: Segmentation by grouping junctions. In: CVPR, vol. 98, p. 125. Citeseer (1998)
Lellmann, J., Schnörr, C.: Continuous multiclass labeling approaches and algorithms. SIAM J. Imag. Sci. 4(4), 1049–1096 (2011)
Möllenhoff, T., Laude, E., Möller, M., Lellmann, J., Cremers, D.: Sublabel-accurate relaxation of nonconvex energies. CoRR abs/1512.01383 (2015)
Mollenhoff, T., Cremers, D.: Sublabel-accurate discretization of nonconvex free-discontinuity problems. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1183–1191 (2017)
Mollenhoff, T., Cremers, D.: Lifting vectorial variational problems: a natural formulation based on geometric measure theory and discrete exterior calculus. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 11117–11126 (2019)
Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An iterative regularization method for total variation-based image restoration. Multiscale Model. Simul. 4(22), 460–489 (2005)
Osher, S., Mao, Y., Dong, B., Yin, W.: Fast linearized Bregman iteration for compressive sensing and sparse denoising. arXiv preprint arXiv:1104.0262 (2011)
Pock, T., Cremers, D., Bischof, H., Chambolle, A.: Global solutions of variational models with convex regularization. SIAM J. Imag. Sci. 3(4), 1122–1145 (2010)
Pock, T., Schoenemann, T., Graber, G., Bischof, H., Cremers, D.: A convex formulation of continuous multi-label problems, pp. 792–805 (2008)
Rockafellar, R.T.: Convex Analysis, vol. 28. Princeton University Press, Princeton (1970)
Rockafellar, R.T., Wets, R.J.: Variational Analysis, vol. 317. Springer, Heidelberg (2009)
Scharstein, D., et al.: High-resolution stereo datasets with subpixel-accurate ground truth. In: Jiang, X., Hornegger, J., Koch, R. (eds.) GCPR 2014. LNCS, vol. 8753, pp. 31–42. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11752-2_3
Scherzer, O., Grasmair, M., Grossauer, H., Haltmeier, M., Lenzen, F.: Variational Methods in Imaging, Applied Mathematical Sciences, vol. 167. Springer, New York (2009). https://doi.org/10.1007/978-0-387-69277-7
Vogt, T., Haase, R., Bednarski, D., Lellmann, J.: On the connection between dynamical optimal transport and functional lifting. arXiv preprint arXiv:2007.02587 (2020)
Zach, C., Gallup, D., Frahm, J.M., Niethammer, M.: Fast global labeling for real-time stereo using multiple plane sweeps. In: Vis. Mod. Vis., pp. 243–252 (2008)
Acknowledgments
The authors acknowledge support through DFG grant LE 4064/1-1 “Functional Lifting 2.0: Efficient Convexifications for Imaging and Vision” and NVIDIA Corporation.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Bednarski, D., Lellmann, J. (2021). Inverse Scale Space Iterations for Non-convex Variational Problems Using Functional Lifting. In: Elmoataz, A., Fadili, J., Quéau, Y., Rabin, J., Simon, L. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2021. Lecture Notes in Computer Science(), vol 12679. Springer, Cham. https://doi.org/10.1007/978-3-030-75549-2_19
Download citation
DOI: https://doi.org/10.1007/978-3-030-75549-2_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-75548-5
Online ISBN: 978-3-030-75549-2
eBook Packages: Computer ScienceComputer Science (R0)