Inverse Scale Space Iterations for Non-convex Variational Problems Using Functional Lifting | SpringerLink
Skip to main content

Inverse Scale Space Iterations for Non-convex Variational Problems Using Functional Lifting

  • Conference paper
  • First Online:
Scale Space and Variational Methods in Computer Vision (SSVM 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12679))

Abstract

Non-linear filtering approaches allow to obtain decompositions of images with respect to a non-classical notion of scale. The associated inverse scale space flow can be obtained using the classical Bregman iteration applied to a convex, absolutely one-homogeneous regularizer. In order to extend these approaches to general energies with non-convex data term, we apply the Bregman iteration to a lifted version of the functional with sublabel-accurate discretization. We provide a condition for the subgradients of the regularizer under which this lifted iteration reduces to the standard Bregman iteration. We show experimental results for the convex and non-convex case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations, vol. 147. Springer, New York (2006). https://doi.org/10.1007/978-0-387-44588-5

    Book  MATH  Google Scholar 

  2. Benning, M., Burger, M.: Ground states and singular vectors of convex variational regularization methods. arXiv preprint arXiv:1211.2057 (2012)

  3. Burger, M., Gilboa, G., Moeller, M., Eckardt, L., Cremers, D.: Spectral decompositions using one-homogeneous functionals. SIAM J. Imag. Sci. 9(3), 1374–1408 (2016)

    Article  MathSciNet  Google Scholar 

  4. Burger, M., Gilboa, G., Osher, S., Xu, J., et al.: Nonlinear inverse scale space methods. Commun. Math. Sci. 4(1), 179–212 (2006)

    Article  MathSciNet  Google Scholar 

  5. Burger, M., Eckardt, L., Gilboa, G., Moeller, M.: Spectral representations of one-homogeneous functionals. In: Aujol, J.-F., Nikolova, M., Papadakis, N. (eds.) SSVM 2015. LNCS, vol. 9087, pp. 16–27. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18461-6_2

    Chapter  Google Scholar 

  6. Cai, J., Osher, S., Shen, Z.: Linearized Bregman iterations for compressed sensing. Math. Comput. 78(267), 1515–1536 (2009)

    Article  MathSciNet  Google Scholar 

  7. Chambolle, A., Cremers, D., Pock, T.: A convex approach for computing minimal partitions (2008)

    Google Scholar 

  8. Chan, T.F., Esedoglu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math. 66(5), 1632–1648 (2006)

    Article  MathSciNet  Google Scholar 

  9. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Proc. 10(2), 266–277 (2001)

    Article  Google Scholar 

  10. Gilboa, G.: Semi-inner-products for convex functionals and their use in image decomposition. J. Math. Imag. Vis. 57(1), 26–42 (2017)

    Article  MathSciNet  Google Scholar 

  11. Gilboa, G.: A spectral approach to total variation. In: Kuijper, A., Bredies, K., Pock, T., Bischof, H. (eds.) SSVM 2013. LNCS, vol. 7893, pp. 36–47. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38267-3_4

    Chapter  Google Scholar 

  12. Gilboa, G., Moeller, M., Burger, M.: Nonlinear spectral analysis via one-homogeneous functionals: overview and future prospects. J. Math. Imag. Vis. 56(2), 300–319 (2016)

    Article  MathSciNet  Google Scholar 

  13. Goldstein, T., Osher, S.: The split Bregman method for L1-regularized problems. SIAM J. Imag. Sci. 2(2), 323–343 (2009)

    Article  MathSciNet  Google Scholar 

  14. Hoeltgen, L., Breuß, M.: Bregman iteration for correspondence problems: A study of optical flow. arXiv preprint arXiv:1510.01130 (2015)

  15. Ishikawa, H.: Exact optimization for Markov random fields with convex priors. Patt. Anal. Mach. Intell. 25(10), 1333–1336 (2003)

    Article  Google Scholar 

  16. Ishikawa, H., Geiger, D.: Segmentation by grouping junctions. In: CVPR, vol. 98, p. 125. Citeseer (1998)

    Google Scholar 

  17. Lellmann, J., Schnörr, C.: Continuous multiclass labeling approaches and algorithms. SIAM J. Imag. Sci. 4(4), 1049–1096 (2011)

    Article  MathSciNet  Google Scholar 

  18. Möllenhoff, T., Laude, E., Möller, M., Lellmann, J., Cremers, D.: Sublabel-accurate relaxation of nonconvex energies. CoRR abs/1512.01383 (2015)

    Google Scholar 

  19. Mollenhoff, T., Cremers, D.: Sublabel-accurate discretization of nonconvex free-discontinuity problems. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1183–1191 (2017)

    Google Scholar 

  20. Mollenhoff, T., Cremers, D.: Lifting vectorial variational problems: a natural formulation based on geometric measure theory and discrete exterior calculus. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 11117–11126 (2019)

    Google Scholar 

  21. Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An iterative regularization method for total variation-based image restoration. Multiscale Model. Simul. 4(22), 460–489 (2005)

    Article  MathSciNet  Google Scholar 

  22. Osher, S., Mao, Y., Dong, B., Yin, W.: Fast linearized Bregman iteration for compressive sensing and sparse denoising. arXiv preprint arXiv:1104.0262 (2011)

  23. Pock, T., Cremers, D., Bischof, H., Chambolle, A.: Global solutions of variational models with convex regularization. SIAM J. Imag. Sci. 3(4), 1122–1145 (2010)

    Article  MathSciNet  Google Scholar 

  24. Pock, T., Schoenemann, T., Graber, G., Bischof, H., Cremers, D.: A convex formulation of continuous multi-label problems, pp. 792–805 (2008)

    Google Scholar 

  25. Rockafellar, R.T.: Convex Analysis, vol. 28. Princeton University Press, Princeton (1970)

    Book  Google Scholar 

  26. Rockafellar, R.T., Wets, R.J.: Variational Analysis, vol. 317. Springer, Heidelberg (2009)

    MATH  Google Scholar 

  27. Scharstein, D., et al.: High-resolution stereo datasets with subpixel-accurate ground truth. In: Jiang, X., Hornegger, J., Koch, R. (eds.) GCPR 2014. LNCS, vol. 8753, pp. 31–42. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11752-2_3

    Chapter  Google Scholar 

  28. Scherzer, O., Grasmair, M., Grossauer, H., Haltmeier, M., Lenzen, F.: Variational Methods in Imaging, Applied Mathematical Sciences, vol. 167. Springer, New York (2009). https://doi.org/10.1007/978-0-387-69277-7

    Book  MATH  Google Scholar 

  29. Vogt, T., Haase, R., Bednarski, D., Lellmann, J.: On the connection between dynamical optimal transport and functional lifting. arXiv preprint arXiv:2007.02587 (2020)

  30. Zach, C., Gallup, D., Frahm, J.M., Niethammer, M.: Fast global labeling for real-time stereo using multiple plane sweeps. In: Vis. Mod. Vis., pp. 243–252 (2008)

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge support through DFG grant LE 4064/1-1 “Functional Lifting 2.0: Efficient Convexifications for Imaging and Vision” and NVIDIA Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danielle Bednarski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bednarski, D., Lellmann, J. (2021). Inverse Scale Space Iterations for Non-convex Variational Problems Using Functional Lifting. In: Elmoataz, A., Fadili, J., Quéau, Y., Rabin, J., Simon, L. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2021. Lecture Notes in Computer Science(), vol 12679. Springer, Cham. https://doi.org/10.1007/978-3-030-75549-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75549-2_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75548-5

  • Online ISBN: 978-3-030-75549-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics