Weighted Network Analysis Using the Debye Model | SpringerLink
Skip to main content

Weighted Network Analysis Using the Debye Model

  • Conference paper
  • First Online:
Structural, Syntactic, and Statistical Pattern Recognition (S+SSPR 2021)

Abstract

Statistical mechanics provides effective means for complex network analysis, and in particular the classical Boltzmann partition function has been extensively used to explore network structure. One of the shortcomings of this model is that it is couched in terms of unweighted edges. To overcome this problem and to extend the utility of this type of analysis, in this paper, we explore how the Debye solid model can be used to describe the probability density function for particles in such a system. According to our analogy the distribution of node degree and edge-weight in the network can be derived from the distribution of molecular energy in the Debye model. This allows us to derive a probability density function for nodes, and thus is identical to the degree distribution for the case of uniformly weighted edges. We also consider the case where the edge weights follow a distribution (non-uniformly weighted edges). The corresponding network energy is the cumulative distribution function for the node degree. This distribution reveals a phase transition for the temperature dependence. The Debye model thus provides a new way to describe the node degree distribution in both unweighted and weighted networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Petri, G., Scolamiero, M., Donato, I., Vaccarino, F.: Topological strata of weighted complex networks. PLoS One 8(6) (2013)

    Google Scholar 

  2. Anand, K., Krioukov, D., Bianconi, G.: Entropy distribution and condensation in random networks with a given degree distribution. Phys. Rev. E 89(6), 062807 (2014)

    Google Scholar 

  3. Wang, J., Lin, C., Wang, Y.: Thermodynamic entropy in quantum statistics for stock market networks. Complexity 2019, 1–11 (2019)

    Google Scholar 

  4. Cimini, G., Squartini, T., Saracco, F., Garlaschelli, D., Gabrielli, A., Caldarelli, G.: The statistical physics of real-world networks. Nat. Rev. Phys. 1(1), 58–71 (2019)

    Article  Google Scholar 

  5. Wang, J., Richard, W., Edwin, H.: Spin statistics, partition functions and network entropy. J. Complex Netw. 5(6), 858–883 (2017)

    Article  MathSciNet  Google Scholar 

  6. Ye, C., et al.: Thermodynamic characterization of networks using graph polynomials. Phys. Rev. E 92(3), 032810 (2015)

    Article  Google Scholar 

  7. Wang, J., Wilson, R.C., Hancock, E.R.: Directed and undirected network evolution from Euler-Lagrange dynamics. Pattern Recognit. Lett. 1(134), 135–44 (2020)

    Google Scholar 

  8. Jean-Charles, D., Anne-Sophie, L.: Centrality measures and thermodynamic formalism for complex networks. Phys. Rev. E 83, 046117 (2011)

    Article  Google Scholar 

  9. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws, shrinking diameters and possible explanations. In: ACM SIGKDD (2005)

    Google Scholar 

  10. Viswanath, B., Mislove, A., Cha, M., Gummadi, K.P.: On the evolution of user interaction in Facebook. In: Proceedings of the Workshop on Online Social Networks, pp. 37–42 (2009)

    Google Scholar 

  11. Yang, J., Leskovec, J.: Defining and evaluating network communities based on ground-truth. Knowl. Inf. Syst. 42(1), 181–213 (2015)

    Article  Google Scholar 

  12. Silva, F.N., et al.: Modular dynamics of financial market networks. arXiv preprint arXiv:1501.05040. 21 January 2015

  13. Szklarczyk, D., Gable, A.L., Lyon, D., et al.: STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47(D1), D607–D613 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjia Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, H., Wu, H., Wang, J., Hancock, E.R. (2021). Weighted Network Analysis Using the Debye Model. In: Torsello, A., Rossi, L., Pelillo, M., Biggio, B., Robles-Kelly, A. (eds) Structural, Syntactic, and Statistical Pattern Recognition. S+SSPR 2021. Lecture Notes in Computer Science(), vol 12644. Springer, Cham. https://doi.org/10.1007/978-3-030-73973-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73973-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73972-0

  • Online ISBN: 978-3-030-73973-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics