Is Requirements Similarity a Good Proxy for Software Similarity? An Empirical Investigation in Industry | SpringerLink
Skip to main content

Is Requirements Similarity a Good Proxy for Software Similarity? An Empirical Investigation in Industry

  • Conference paper
  • First Online:
Requirements Engineering: Foundation for Software Quality (REFSQ 2021)

Abstract

[Context and Motivation] Content-based recommender systems for requirements are typically built on the assumption that similar requirements can be used as proxies to retrieve similar software. When a new requirement is proposed by a stakeholder, natural language processing (NLP)-based similarity metrics can be exploited to retrieve existing requirements, and in turn identify previously developed code. [Question/problem] Several NLP approaches for similarity computation are available, and there is little empirical evidence on the adoption of an effective technique in recommender systems specifically oriented to requirements-based code reuse. [Principal ideas/results] This study compares different state-of-the-art NLP approaches and correlates the similarity among requirements with the similarity of their source code. The evaluation is conducted on real-world requirements from two industrial projects in the railway domain. Results show that requirements similarity computed with the traditional tf-idf approach has the highest correlation with the actual software similarity in the considered context. Furthermore, results indicate a moderate positive correlation with Spearman’s rank correlation coefficient of more than 0.5. [Contribution] Our work is among the first ones to explore the relationship between requirements similarity and software similarity. In addition, we also identify a suitable approach for computing requirements similarity that reflects software similarity well in an industrial context. This can be useful not only in recommender systems but also in other requirements engineering tasks in which similarity computation is relevant, such as tracing and categorization.

This work has been supported by and received funding from the ITEA3 XIVT, and KK Foundation’s ARRAY project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The option “optimize for traceability” was selected in Embedded Coder.

  2. 2.

    https://spacy.io/.

  3. 3.

    https://github.com/RaRe-Technologies/gensim-data.

  4. 4.

    Xiao Han, https://github.com/hanxiao/bert-as-service.

  5. 5.

    In our case, each folder for a pair contains two sub-folders with code of each requirement.

  6. 6.

    RStudio, Available online, https://rstudio.com/.

  7. 7.

    Replication package, https://doi.org/10.5281/zenodo.4275388.

References

  1. Abbas, M., Jongeling, R., Lindskog, C., Enoiu, E.P., Saadatmand, M., Sundmark, D.: Product line adoption in industry: an experience report from the railway domain. In: Proceedings of the 24th ACM Conference on Systems and Software Product Line: Volume A - Volume A. SPLC 2020. ACM, New York (2020)

    Google Scholar 

  2. Abbas, M., Saadatmand, M., Enoiu, E., Sundamark, D., Lindskog, C.: Automated reuse recommendation of product line assets based on natural language requirements. In: Ben Sassi, S., Ducasse, S., Mili, H. (eds.) Reuse in Emerging Software Engineering Practices, pp. 173–189. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64694-3_11

    Chapter  Google Scholar 

  3. Arora, C., Sabetzadeh, M., Briand, L., Zimmer, F.: Automated extraction and clustering of requirements glossary terms. Trans. Soft. Eng. 43(10), 918–945 (2016)

    Article  Google Scholar 

  4. Arora, C., Sabetzadeh, M., Goknil, A., Briand, L.C., Zimmer, F.: Change impact analysis for natural language requirements: an NLP approach. In: International Requirements Engineering Conference (RE), pp. 6–15. IEEE (2015)

    Google Scholar 

  5. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with subword information. Trans. Assoc. Comput. Linguist. 5, 135–146 (2017)

    Article  Google Scholar 

  6. Borg, M., Runeson, P., Ardö, A.: Recovering from a decade: a systematic mapping of information retrieval approaches to software traceability. Empir. Softw. Eng. 19(6), 1565–1616 (2014). https://doi.org/10.1007/s10664-013-9255-y

    Article  Google Scholar 

  7. Borg, M., Wnuk, K., Regnell, B., Runeson, P.: Supporting change impact analysis using a recommendation system: an industrial case study in a safety-critical context. IEEE Trans. Soft. Eng. 43(7), 675–700 (2016)

    Article  Google Scholar 

  8. Castro-Herrera, C., Cleland-Huang, J., Mobasher, B.: Enhancing stakeholder profiles to improve recommendations in online requirements elicitation. In: International Requirements Engineering Conference, pp. 37–46. IEEE (2009)

    Google Scholar 

  9. Natt och Dag, J., Regnell, B., Gervasi, V., Brinkkemper, S.: A linguistic-engineering approach to large-scale requirements management. IEEE Softw. 22(1), 32–39 (2005)

    Google Scholar 

  10. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  11. Dumitru, H., et al.: On-demand feature recommendations derived from mining public product descriptions. In: International Conference on Software Engineering, pp. 181–190 (2011)

    Google Scholar 

  12. Eyal-Salman, H., Seriai, A.D., Dony, C.: Feature-to-code traceability in a collection of software variants: combining formal concept analysis and information retrieval. In: 2013 IEEE 14th International Conference on Information Reuse & Integration (IRI), pp. 209–216 (2013)

    Google Scholar 

  13. Falessi, D., Cantone, G., Canfora, G.: Empirical principles and an industrial case study in retrieving equivalent requirements via natural language processing techniques. Trans. Softw. Eng. 39(1), 18–44 (2011)

    Article  Google Scholar 

  14. Felfernig, A., Falkner, A., Atas, M., Franch, X., Palomares, C.: OpenReq: recommender systems in requirements engineering. In: RS-BDA, pp. 1–4 (2017)

    Google Scholar 

  15. Fernández, D.M., et al.: Naming the pain in requirements engineering. Empir. Softw. Eng. 22(5), 2298–2338 (2017)

    Article  Google Scholar 

  16. Ferrari, A., Spagnolo, G.O., Gnesi, S.: Pure: a dataset of public requirements documents. In: 2017 IEEE 25th International Requirements Engineering Conference (RE), pp. 502–505 (2017). https://doi.org/10.1109/RE.2017.29

  17. Gervasi, V., Zowghi, D.: Supporting traceability through affinity mining. In: International Requirements Engineering Conference (RE), pp. 143–152. IEEE (2014)

    Google Scholar 

  18. Guo, J., Cheng, J., Cleland-Huang, J.: Semantically enhanced software traceability using deep learning techniques. In: International Conference on Software Engineering (ICSE), pp. 3–14. IEEE (2017)

    Google Scholar 

  19. Hariri, N., Castro-Herrera, C., Cleland-Huang, J., Mobasher, B.: Recommendation systems in requirements discovery. In: Robillard, M.P., Maalej, W., Walker, R.J., Zimmermann, T. (eds.) Recommendation Systems in Software Engineering, pp. 455–476. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-45135-5_17

    Chapter  Google Scholar 

  20. Irshad, M., Petersen, K., Poulding, S.: A systematic literature review of software requirements reuse approaches. IST J. 93, 223–245 (2018)

    Google Scholar 

  21. Jolliffe, I.T., Cadima, J.: Principal component analysis: a review and recent developments. Philos. Trans. Royal Soc. A: Math. Phys. Eng. Sci. 374(2065), 20150202 (2016)

    Article  MathSciNet  Google Scholar 

  22. Krueger, C.W.: Easing the transition to software mass customization. In: van der Linden, F. (ed.) PFE 2001. LNCS, vol. 2290, pp. 282–293. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-47833-7_25

    Chapter  MATH  Google Scholar 

  23. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In: International Conference on Machine Learning, pp. 1188–1196 (2014)

    Google Scholar 

  24. Lops, P., de Gemmis, M., Semeraro, G.: Content-based recommender systems: state of the art and trends. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 73–105. Springer, Boston, MA (2011). https://doi.org/10.1007/978-0-387-85820-3_3

    Chapter  Google Scholar 

  25. Manning, C.D., Schütze, H., Raghavan, P.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  26. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space (2013)

    Google Scholar 

  27. Nyamawe, A.S., Liu, H., Niu, N., Umer, Q., Niu, Z.: Automated recommendation of software refactorings based on feature requests. In: International Requirements Engineering Conference (RE), pp. 187–198. IEEE (2019)

    Google Scholar 

  28. Palomares, C., Franch, X., Fucci, D.: Personal recommendations in requirements engineering: the OpenReq approach. In: Kamsties, E., Horkoff, J., Dalpiaz, F. (eds.) REFSQ 2018. LNCS, vol. 10753, pp. 297–304. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77243-1_19

    Chapter  Google Scholar 

  29. Pohl, K., Böckle, G., van Der Linden, F.J.: Software Product Line Engineering: Foundations, Principles and Techniques. Springer, Heidelberg (2005)

    Google Scholar 

  30. Prechelt, L., Malpohl, G., Philippsen, M., et al.: Finding plagiarisms among a set of programs with JPlag. J. UCS 8(11), 1016 (2002)

    Google Scholar 

  31. Řehůřek, R., Sojka, P.: Software framework for topic modelling with large corpora. In: Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks, pp. 45–50. ELRA, May 2010

    Google Scholar 

  32. Robillard, M.P., Maalej, W., Walker, R.J., Zimmermann, T. (eds.): Recommendation Systems in Software Engineering. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-45135-5

  33. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research in software engineering. Empir. Softw. Eng. 14(2), 131–164 (2009)

    Article  Google Scholar 

  34. Shatnawi, A., Seriai, A., Sahraoui, H., Ziadi, T., Seriai, A.: Reside: reusable service identification from software families. JSS 170 (2020)

    Google Scholar 

  35. Shatnawi, A., Seriai, A.D., Sahraoui, H.: Recovering software product line architecture of a family of object-oriented product variants. J. Syst. Softw. 131, 325–346 (2017)

    Article  Google Scholar 

  36. White, M., Tufano, M., Vendome, C., Poshyvanyk, D.: Deep learning code fragments for code clone detection. In: International Conference on Automated Software Engineering (ASE), pp. 87–98. IEEE (2016)

    Google Scholar 

  37. Wieringa, R., Daneva, M.: Six strategies for generalizing software engineering theories. Sci. Comput. Program. 101, 136–152 (2015)

    Article  Google Scholar 

  38. Zhao, L., et al.: Natural language processing (NLP) for requirements engineering: A systematic mapping study. arXiv preprint arXiv:2004.01099 (2020)

  39. Ziadi, T., Frias, L., da Silva, M.A.A., Ziane, M.: Feature identification from the source code of product variants. In: 2012 16th European Conference on Software Maintenance and Reengineering, pp. 417–422. IEEE (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Abbas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abbas, M., Ferrari, A., Shatnawi, A., Enoiu, E.P., Saadatmand, M. (2021). Is Requirements Similarity a Good Proxy for Software Similarity? An Empirical Investigation in Industry. In: Dalpiaz, F., Spoletini, P. (eds) Requirements Engineering: Foundation for Software Quality. REFSQ 2021. Lecture Notes in Computer Science(), vol 12685. Springer, Cham. https://doi.org/10.1007/978-3-030-73128-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73128-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73127-4

  • Online ISBN: 978-3-030-73128-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics