Privacy-Preserving Analytics for Data Markets Using MPC | SpringerLink
Skip to main content

Privacy-Preserving Analytics for Data Markets Using MPC

  • Conference paper
  • First Online:
Privacy and Identity Management (Privacy and Identity 2020)

Abstract

Data markets have the potential to foster new data-driven applications and help growing data-driven businesses. When building and deploying such markets in practice, regulations such as the European Union’s General Data Protection Regulation (GDPR) impose constraints and restrictions on these markets especially when dealing with personal or privacy-sensitive data.

In this paper, we present a candidate architecture for a privacy-preserving personal data market, relying on cryptographic primitives such as multi-party computation (MPC) capabl e of performing privacy-preserving computations on the data. Besides specifying the architecture of such a data market, we also present a privacy-risk analysis of the market following the LINDDUN methodology.

This project leading to this publication has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 871473 (“KRAKEN”).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 7149
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note that in contrast to our definition, Agora allows data brokers, i.e. the market place, to learn the results as well.

References

  1. Medical chain: Whitepaper 2.1 (2018). https://medicalchain.com/Medicalchain-Whitepaper-EN.pdf

  2. Enveil: Encrypted Veil (2020). https://www.enveil.com/

  3. Allen, M.: Health Insurers Are Vacuuming Up Details About You - And It Could Raise Your Rates (2020). https://www.propublica.org/article/health-insurers-are-vacuuming-up-details-about-you-and-it-could-raise-your-rates

  4. Apple-Inc.: A more personal Health app. For a more informed you (2020). https://www.apple.com/ios/health/

  5. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resistance to succinct non-interactive arguments of knowledge, and back again. In: ITCS, pp. 326–349. ACM (2012)

    Google Scholar 

  6. Bogdanov, D., Niitsoo, M., Toft, T., Willemson, J.: High-performance secure multi-party computation for data mining applications. Int. J. Inf. Sec. 11(6), 403–418 (2012)

    Article  Google Scholar 

  7. Boneh, D., Sahai, A., Waters, B.: Functional encryption: a new vision for public-key cryptography. Commun. ACM 55(11), 56–64 (2012)

    Article  Google Scholar 

  8. Brickell, E., Li, J.: Enhanced privacy ID from bilinear pairing for hardware authentication and attestation. In: SocialCom/PASSAT, pp. 768–775. IEEE (2010)

    Google Scholar 

  9. Bruni, A., Helminger, L., Kales, D., Rechberger, C., Walch, R.: Privately Connecting Mobility to Infectious Diseases via Applied Cryptography. IACR Cryptology ePrint Archive 2020, 522 (2020)

    Google Scholar 

  10. Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Balancing accountability and privacy using e-cash (Extended Abstract). In: De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 141–155. Springer, Heidelberg (2006). https://doi.org/10.1007/11832072_10

    Chapter  MATH  Google Scholar 

  11. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anonymous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_7

    Chapter  Google Scholar 

  12. Chandler, S.: We’re giving away more personal data than ever, despite growing risks (2020). https://venturebeat.com/2019/02/24/were-giving-away-more-personal-data-than-ever-despite-growing-risks/

  13. Chaum, D.: Blind signatures for untraceable payments. In: CRYPTO, pp. 199–203. Plenum Press, New York (1982)

    Google Scholar 

  14. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-46416-6_22

    Chapter  Google Scholar 

  15. Cybernetica: Sharemind MPC (2020). https://sharemind.cyber.ee/sharemind-mpc/

  16. Deng, M., Wuyts, K., Scandariato, R., Preneel, B., Joosen, W.: A privacy threat analysis framework: supporting the elicitation and fulfillment of privacy requirements. Req. Eng. 16(1), 3–32 (2011)

    Article  Google Scholar 

  17. Der, U., Jähnichen, S., Sürmeli, J.: Self-sovereign identity - opportunities and challenges for the digital revolution. CoRR abs/1712.01767 (2017)

    Google Scholar 

  18. Dingledine, R., Mathewson, N., Syverson, P.F.: Tor: the second-generation onion router. In: USENIX, pp. 303–320. USENIX (2004)

    Google Scholar 

  19. Duality Technologies Inc: Duality (2020). https://dualitytech.com/

  20. Fernandez, D., Futoransky, A., Ajzenman, G., Travizano, M., Sarraute, C.: Wibson protocol for secure data exchange and batch payments. CoRR abs/2001.08832 (2020)

    Google Scholar 

  21. Garmin-Ltd.: connect: Fitness at your fingertips (2020). https://connect.garmin.com/

  22. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof-systems (extended abstract). In: STOC, pp. 291–304. ACM (1985)

    Google Scholar 

  23. Groth, J.: Non-interactive zero-knowledge arguments for voting. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 467–482. Springer, Heidelberg (2005). https://doi.org/10.1007/11496137_32

    Chapter  Google Scholar 

  24. Ion, M., et al.: Private intersection-sum protocol with applications to attributing aggregate ad conversions. IACR Cryptology ePrint Archive 2017, 738 (2017)

    Google Scholar 

  25. Kim, H., Lee, Y., Abdalla, M., Park, J.H.: Practical dynamic group signature with efficient concurrent joins and batch verifications. IACR Cryptology ePrint Archive 2020, 921 (2020)

    Google Scholar 

  26. Koutsos, V., Papadopoulos, D., Chatzopoulos, D., Tarkoma, S., Hui, P.: Agora: a privacy-aware data marketplace. IACR Cryptology ePrint Archive 2020, 865 (2020)

    Google Scholar 

  27. KRAKEN Consortium: The Project | KRAKEN (2020). https://www.krakenh2020.eu/the_project/overview

  28. linddun.org: LINDDUN privacy engineering (2020). https://www.linddun.org/

  29. Marr, B.: How much data do we create every day? The mind-blowing stats everyone should read (2020). https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/

  30. Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: anonymous distributed e-cash from bitcoin. In: IEEE S&P, pp. 397–411. IEEE (2013)

    Google Scholar 

  31. Morley-Fletcher, E.: MHMD: my health, my data. In: EDBT/ICDT Workshops. CEUR Workshop Proceedings, vol. 1810. CEUR-WS.org (2017)

    Google Scholar 

  32. Mühle, A., Grüner, A., Gayvoronskaya, T., Meinel, C.: A survey on essential components of a self-sovereign identity. Comput. Sci. Rev. 30, 80–86 (2018)

    Article  Google Scholar 

  33. Muoio, D.: Fitbit launches large-scale health study to detect a-fib via heart rate sensors, algorithm (2020). https://www.mobihealthnews.com/news/fitbit-launches-large-scale-consumer-health-study-detect-fib-heart-rate-sensors-algorithm

  34. Muoio, D.: Google mobilizes location tracking data to help public health experts monitor COVID-19 spread (2020). https://www.mobihealthnews.com/news/google-mobilizes-location-tracking-data-help-public-health-experts-monitor-covid-19-spread

  35. Noether, S., Mackenzie, A.: Ring confidential transactions. Ledger 1, 1–18 (2016)

    Article  Google Scholar 

  36. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  MathSciNet  Google Scholar 

  37. Todd, C., Salvetti, P., Naylor, K., Albatat, M.: Towards non-invasive extraction and determination of blood glucose levels. Bioengineering 4(4), 82 (2017)

    Article  Google Scholar 

  38. Wagner, I., Eckhoff, D.: Technical privacy metrics: a systematic survey. ACM Comput. Surv. 51(3), 57:1–57:38 (2018)

    Article  Google Scholar 

  39. Yao, A.C.: Protocols for secure computations (extended abstract). In: FOCS, pp. 160–164. IEEE (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Karl Koch , Stephan Krenn , Donato Pellegrino or Sebastian Ramacher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Koch, K., Krenn, S., Pellegrino, D., Ramacher, S. (2021). Privacy-Preserving Analytics for Data Markets Using MPC. In: Friedewald, M., Schiffner, S., Krenn, S. (eds) Privacy and Identity Management. Privacy and Identity 2020. IFIP Advances in Information and Communication Technology, vol 619. Springer, Cham. https://doi.org/10.1007/978-3-030-72465-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72465-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72464-1

  • Online ISBN: 978-3-030-72465-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics