Abstract
Data markets have the potential to foster new data-driven applications and help growing data-driven businesses. When building and deploying such markets in practice, regulations such as the European Union’s General Data Protection Regulation (GDPR) impose constraints and restrictions on these markets especially when dealing with personal or privacy-sensitive data.
In this paper, we present a candidate architecture for a privacy-preserving personal data market, relying on cryptographic primitives such as multi-party computation (MPC) capabl e of performing privacy-preserving computations on the data. Besides specifying the architecture of such a data market, we also present a privacy-risk analysis of the market following the LINDDUN methodology.
This project leading to this publication has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 871473 (“KRAKEN”).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Note that in contrast to our definition, Agora allows data brokers, i.e. the market place, to learn the results as well.
References
Medical chain: Whitepaper 2.1 (2018). https://medicalchain.com/Medicalchain-Whitepaper-EN.pdf
Enveil: Encrypted Veil (2020). https://www.enveil.com/
Allen, M.: Health Insurers Are Vacuuming Up Details About You - And It Could Raise Your Rates (2020). https://www.propublica.org/article/health-insurers-are-vacuuming-up-details-about-you-and-it-could-raise-your-rates
Apple-Inc.: A more personal Health app. For a more informed you (2020). https://www.apple.com/ios/health/
Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resistance to succinct non-interactive arguments of knowledge, and back again. In: ITCS, pp. 326–349. ACM (2012)
Bogdanov, D., Niitsoo, M., Toft, T., Willemson, J.: High-performance secure multi-party computation for data mining applications. Int. J. Inf. Sec. 11(6), 403–418 (2012)
Boneh, D., Sahai, A., Waters, B.: Functional encryption: a new vision for public-key cryptography. Commun. ACM 55(11), 56–64 (2012)
Brickell, E., Li, J.: Enhanced privacy ID from bilinear pairing for hardware authentication and attestation. In: SocialCom/PASSAT, pp. 768–775. IEEE (2010)
Bruni, A., Helminger, L., Kales, D., Rechberger, C., Walch, R.: Privately Connecting Mobility to Infectious Diseases via Applied Cryptography. IACR Cryptology ePrint Archive 2020, 522 (2020)
Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Balancing accountability and privacy using e-cash (Extended Abstract). In: De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 141–155. Springer, Heidelberg (2006). https://doi.org/10.1007/11832072_10
Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anonymous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_7
Chandler, S.: We’re giving away more personal data than ever, despite growing risks (2020). https://venturebeat.com/2019/02/24/were-giving-away-more-personal-data-than-ever-despite-growing-risks/
Chaum, D.: Blind signatures for untraceable payments. In: CRYPTO, pp. 199–203. Plenum Press, New York (1982)
Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-46416-6_22
Cybernetica: Sharemind MPC (2020). https://sharemind.cyber.ee/sharemind-mpc/
Deng, M., Wuyts, K., Scandariato, R., Preneel, B., Joosen, W.: A privacy threat analysis framework: supporting the elicitation and fulfillment of privacy requirements. Req. Eng. 16(1), 3–32 (2011)
Der, U., Jähnichen, S., Sürmeli, J.: Self-sovereign identity - opportunities and challenges for the digital revolution. CoRR abs/1712.01767 (2017)
Dingledine, R., Mathewson, N., Syverson, P.F.: Tor: the second-generation onion router. In: USENIX, pp. 303–320. USENIX (2004)
Duality Technologies Inc: Duality (2020). https://dualitytech.com/
Fernandez, D., Futoransky, A., Ajzenman, G., Travizano, M., Sarraute, C.: Wibson protocol for secure data exchange and batch payments. CoRR abs/2001.08832 (2020)
Garmin-Ltd.: connect: Fitness at your fingertips (2020). https://connect.garmin.com/
Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof-systems (extended abstract). In: STOC, pp. 291–304. ACM (1985)
Groth, J.: Non-interactive zero-knowledge arguments for voting. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 467–482. Springer, Heidelberg (2005). https://doi.org/10.1007/11496137_32
Ion, M., et al.: Private intersection-sum protocol with applications to attributing aggregate ad conversions. IACR Cryptology ePrint Archive 2017, 738 (2017)
Kim, H., Lee, Y., Abdalla, M., Park, J.H.: Practical dynamic group signature with efficient concurrent joins and batch verifications. IACR Cryptology ePrint Archive 2020, 921 (2020)
Koutsos, V., Papadopoulos, D., Chatzopoulos, D., Tarkoma, S., Hui, P.: Agora: a privacy-aware data marketplace. IACR Cryptology ePrint Archive 2020, 865 (2020)
KRAKEN Consortium: The Project | KRAKEN (2020). https://www.krakenh2020.eu/the_project/overview
linddun.org: LINDDUN privacy engineering (2020). https://www.linddun.org/
Marr, B.: How much data do we create every day? The mind-blowing stats everyone should read (2020). https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/
Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: anonymous distributed e-cash from bitcoin. In: IEEE S&P, pp. 397–411. IEEE (2013)
Morley-Fletcher, E.: MHMD: my health, my data. In: EDBT/ICDT Workshops. CEUR Workshop Proceedings, vol. 1810. CEUR-WS.org (2017)
Mühle, A., Grüner, A., Gayvoronskaya, T., Meinel, C.: A survey on essential components of a self-sovereign identity. Comput. Sci. Rev. 30, 80–86 (2018)
Muoio, D.: Fitbit launches large-scale health study to detect a-fib via heart rate sensors, algorithm (2020). https://www.mobihealthnews.com/news/fitbit-launches-large-scale-consumer-health-study-detect-fib-heart-rate-sensors-algorithm
Muoio, D.: Google mobilizes location tracking data to help public health experts monitor COVID-19 spread (2020). https://www.mobihealthnews.com/news/google-mobilizes-location-tracking-data-help-public-health-experts-monitor-covid-19-spread
Noether, S., Mackenzie, A.: Ring confidential transactions. Ledger 1, 1–18 (2016)
Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
Todd, C., Salvetti, P., Naylor, K., Albatat, M.: Towards non-invasive extraction and determination of blood glucose levels. Bioengineering 4(4), 82 (2017)
Wagner, I., Eckhoff, D.: Technical privacy metrics: a systematic survey. ACM Comput. Surv. 51(3), 57:1–57:38 (2018)
Yao, A.C.: Protocols for secure computations (extended abstract). In: FOCS, pp. 160–164. IEEE (1982)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 IFIP International Federation for Information Processing
About this paper
Cite this paper
Koch, K., Krenn, S., Pellegrino, D., Ramacher, S. (2021). Privacy-Preserving Analytics for Data Markets Using MPC. In: Friedewald, M., Schiffner, S., Krenn, S. (eds) Privacy and Identity Management. Privacy and Identity 2020. IFIP Advances in Information and Communication Technology, vol 619. Springer, Cham. https://doi.org/10.1007/978-3-030-72465-8_13
Download citation
DOI: https://doi.org/10.1007/978-3-030-72465-8_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-72464-1
Online ISBN: 978-3-030-72465-8
eBook Packages: Computer ScienceComputer Science (R0)