Relevance of Near-Term Quantum Computing in the Cloud: A Humanities Perspective | SpringerLink
Skip to main content

Relevance of Near-Term Quantum Computing in the Cloud: A Humanities Perspective

  • Conference paper
  • First Online:
Cloud Computing and Services Science (CLOSER 2020)

Abstract

As quantum computers are becoming real, they have the inherent potential to significantly impact many application domains. In this paper we outline the fundamentals about programming quantum computers and show that quantum programs are typically hybrid consisting of a mixture of classical parts and quantum parts. With the advent of quantum computers in the cloud, the cloud is a fine environment for performing quantum programs. The tool chain available for creating and running such programs is sketched. As an exemplary problem we discuss efforts to implement quantum programs that are hardware independent. A use case from quantum humanities is discussed, hinting which applications in this domain can already be used in the field of (quantum) machine learning. Finally, a collaborative platform for solving problems with quantum computers – that is currently under construction – is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aimeur, E., Brassard, G., Gambs, S.: Quantum clustering algorithms. In: Proceedings of the 24th International Conference on Machine Learning, Corvallis, OR (2007)

    Google Scholar 

  2. Amin, M.A., Andriyash, E., Rolfe, J., Kulchytskyy, B., Melko, R.: Quantum Boltzmann machine. Phys. Rev. X 8, 021050 (2018)

    Google Scholar 

  3. Ankerst, M., Breunig, M.M., Kriegel, H., Sander, J.: OPTICS: ordering points to identify the clustering structure. In: ACM SIGMOD International Conference on Management of Data. ACM Press (1999)

    Google Scholar 

  4. Barzen, J.: Wenn Kostüme sprechen – Musterforschung in den Digital Humanities am Beispiel vestimentärer Kommunikation im Film. Dissertation University Cologne (2018). (in German)

    Google Scholar 

  5. Barzen, J.: Taxonomien kostümrelevanter Parameter: Annäherung an eine Ontologisierung der Domäne des Filmkostüms. Technical report, University Stuttgart, no. 2013/04 (2013). (in German)

    Google Scholar 

  6. Barzen, J., Breitenbücher, U., Eusterbrock, L., Falkenthal, M., Hentschel, F., Leymann, F.: The vision for MUSE4Music. Applying the MUSE method in musicology. Comput. Sci. Res. Dev. 32, 323–328 (2017). https://doi.org/10.1007/s00450-016-0336-1. Proceedings of SummerSoC 2016

    Article  Google Scholar 

  7. Barzen, J., Falkenthal, M., Leymann, F.: Wenn Kostüme sprechen könnten: MUSE - Ein musterbasierter Ansatz an die vestimentäre Kommunikation im Film. In: Bockwinkel, P., Nickel, B., Viehhauser, G. (eds.) Digital Humanities. Perspektiven der Praxis, Frank & Timme (2018). (in German)

    Google Scholar 

  8. Barzen, J., Leymann, F.: Quantum humanities: a first use case for quantum-ML in media science. In: ISAAI 2019 Proceedings—Artificial Intelligence (2020). Digitale Welt 4(1)

    Google Scholar 

  9. Barzen, J., Leymann, F.: Quantum humanities: a vision for quantum computing in digital humanities. SICS Softw.-Intensive Cyber-Phys. Syst. 35(1–2), 153–158 (2019). https://doi.org/10.1007/s00450-019-00419-4

    Article  Google Scholar 

  10. Berry, D. (ed.): Understanding Digital Humanities. Palgrave, London (2012)

    Google Scholar 

  11. Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum machine learning. Nature 549, 195–202 (2017)

    Article  Google Scholar 

  12. Binz, T., et al.: OpenTOSCA – a runtime for TOSCA-based cloud applications. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 692–695. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45005-1_62

    Chapter  Google Scholar 

  13. Booth Jr., J.: Quantum compiler optimizations (2012). arXiv:1206.3348

  14. Ciliberto, C., et al.: Quantum machine learning: a classical perspective. Proc. Roy. Soc. A 474 (2018). https://doi.org/10.1098/rspa.2017.0551

  15. Cloudify (2020). https://cloudify.co/. Accessed 07 Sept 2020

  16. Cox, T.F., Cox, M.A.A.: Multidimensional Scaling. Chapman and Hall, London (2001)

    MATH  Google Scholar 

  17. Crooks, G.E.: Performance of the quantum approximate optimization algorithm on the maximum cut problem (2018). arXiv:1811.08419v1

  18. Dunjko, V., Taylor, J.M., Briegel, H.J.: Quantum-enhanced machine learning. Phys. Rev. Lett. 117, 130501 (2016)

    Article  MathSciNet  Google Scholar 

  19. Falkenthal, M., et al.: Pattern research in the digital humanities: how data mining techniques support the identification of costume patterns. Comput. Sci. Res. Dev. 32, 311–321 (2016). https://doi.org/10.1007/s00450-016-0331-6. Proceedings of SummerSoC 2016

    Article  Google Scholar 

  20. Falkenthal, M., Barzen, J., Breitenbücher, U., Fehling, C., Leymann, F.: Effective pattern application: validating the concept of solution implementation in different domains. Int. J. Adv. Softw. 7(3&4), 710–726 (2014)

    Google Scholar 

  21. Falkenthal, M., et al.: Leveraging pattern applications via pattern refinement. In: Proceedings of the International Conference on Pursuit of Pattern Languages for Social Change (PURPLSOC), pp. 38–61. epubli GmbH (2016)

    Google Scholar 

  22. Falkenthal, M., Barzen, J., Breitenbücher, U., Leymann, F.: Solution languages: easing pattern composition in different domains. Int. J. Adv. Softw. 10(3&4), 263–274 (2017)

    Google Scholar 

  23. Falkenthal, M., et al.: Datenanalyse in den Digital Humanities – Eine Annäherung an Kostümmuster mittels OLAP Cubes. In: Datenbanksysteme für Business, Technologie und Web (BTW), 16. Fachtagung des GI-Fachbereichs “Datenbanken und Informationssysteme” (2015). (in German)

    Google Scholar 

  24. Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algorithm. MIT-CTP/4610 (2014)

    Google Scholar 

  25. Ghobadi, R., Oberoi, J.S., Zahedinejhad, E.: The power of one qubit in machine learning (2019). arXiv:1905.01390v2

  26. Grimsley, H.R., Economou, S.E., Barnes, E., Mayhall, N.J.: An adaptive variational algorithm for exact molecular simulations on a quantum computer. Nat. Commun. 10 (2019). Article number: 3007

    Google Scholar 

  27. Guerreschi, G.G., Smelyanskiy, M.: Practical optimization for hybrid quantum-classical algorithms (2017). arXiv:1701.01450v1

  28. Havenstein, Ch., Thomas, D., Chandrasekaran, S.: Comparisons of performance between quantum and classical machine learning. SMU Data Sci. Rev. 1(4), 11 (2018)

    Google Scholar 

  29. Häner, T., Steiger, D.S., Svore, K., Troyer, M.: A software methodology for compiling quantum programs. Quantum Sci. Technol. 3(2), 020501 (2018)

    Article  Google Scholar 

  30. Heyfron, L.E., Campbell, E.T.: An efficient quantum compiler that reduces T count. Quantum Sci. Technol. 4(1), 015004 (2018)

    Article  Google Scholar 

  31. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  Google Scholar 

  32. Hinton, G.E.: A practical guide to training restricted Boltzmann machines. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, pp. 599–619. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35289-8_32

    Chapter  Google Scholar 

  33. Hofmann, Th., Schölkopf, B., Smola, A.J.: Kernel methods in machine learning. Ann. Stat. 36(3), 1171–1220 (2008)

    Article  MathSciNet  Google Scholar 

  34. Itoko, T., Raymond, R., Imamichi, T., Matsuo, A.: Optimization of quantum circuit mapping using gate transformation and commutation. Integration 70, 43–50 (2020)

    Article  Google Scholar 

  35. Javadi-Abhari, A., Nation, P., Gambetta, J.: Qiskit – write once, target multiple architectures (2019). https://www.ibm.com/blogs/research/2019/11/qiskit-for-multiple-architectures/. Accessed 07 Sept 2020

  36. Javadi-Abhari, A., et al.: ScaffCC: scalable compilation and analysis of quantum programs. Parallel Comput. 45, 2–17 (2015)

    Article  Google Scholar 

  37. Jozsa, R., Linden, N.: On the role of entanglement in quantum-computational speed-up. Proc. Roy. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 459(2036), 2011–2032 (2003)

    Article  MathSciNet  Google Scholar 

  38. Laflamme, R., Miquel, C., Paz, J.P., Zurek, W.H.: Perfect quantum error correcting code. Phys. Rev. Lett. 77(1), 198 (1996)

    Article  Google Scholar 

  39. LaRose, M.: Overview and comparison of gate level quantum software platforms (2019). arXiv:1807.02500v2

  40. Leymann, F.: Towards a pattern language for quantum algorithms. In: Feld, S., Linnhoff-Popien, C. (eds.) QTOP 2019. LNCS, vol. 11413, pp. 218–230. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14082-3_19

    Chapter  Google Scholar 

  41. Leymann, F., Barzen, J.: The bitter truth about gate-based quantum algorithms in the NISQ era. Quantum Sci. Technol. 5, 044007 (2020)

    Article  Google Scholar 

  42. Leymann, F., Barzen, J.: Pattern atlas (2020). arXiv:2006.05120

  43. Leymann, F., Barzen, J., Falkenthal, M.: Towards a platform for sharing quantum software. In: 2019 Proceedings of the 13th Advanced Summer School on Service Oriented Computing. IBM Research Division (2019)

    Google Scholar 

  44. Leymann, F., Barzen, J., Falkenthal, M., Vietz, D., Weder, B., Wild, K.: Quantum in the cloud: application potentials and research opportunities. In: Proceedings of the 10th International Conference on Cloud Computing and Services Science (CLOSER 2020), pp. 9–24. SciTePress (2020)

    Google Scholar 

  45. Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum principal component analysis. Nat. Phys. 10, 631 (2014)

    Article  Google Scholar 

  46. Manning, C., Raghavan, P., Schütze, H.: An Introduction to Information Retrieval. Cambridge University Press, Cambridge (2009)

    MATH  Google Scholar 

  47. Maslov, D., Dueck, G.W., Miller, D.M., Negrevergne, C.: Quantum circuit simplification and level compaction. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 27(3), 436–444 (2008)

    Article  Google Scholar 

  48. McCaskey, A.J., Lyakh, D., Dumitrescu, E., Powers, S., Humble, T.S.: XACC: a system-level software infrastructure for heterogeneous quantum classical computing. Quantum Sci. Technol. 5, 024002 (2020)

    Article  Google Scholar 

  49. Mitarai, K., Kitagawa, M., Fujii, K.: Quantum analog-digital conversion. Phys. Rev. A 99(1), 012301 (2019). American Physical Society

    Google Scholar 

  50. Mohseni, M., Read, P., Neven, H.: Commercialize early quantum technologies. Nature 543(7644), 171–175 (2017)

    Google Scholar 

  51. Montanaro, A.: Quantum algorithms: an overview. npj Quantum Inf. 2 (2016). Article number: 15023

    Google Scholar 

  52. MUSE (2020). https://www.iaas.uni-stuttgart.de/forschung/projekte/muse/. Accessed 07 Sept 2020

  53. MUSE GitHub (2020). https://github.com/Muster-Suchen-und-Erkennen/muse-docker. Accessed 07 Sept 2020

  54. National Academies of Sciences, Engineering, and Medicine: Quantum Computing: Progress and Prospects. The National Academies Press, Washington, DC (2019)

    Google Scholar 

  55. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2016)

    MATH  Google Scholar 

  56. OASIS: TOSCA simple profile in YAML version 1.2. OASIS (2019). Accessed 07 Sept 2020

    Google Scholar 

  57. OpenTOSCA (2020). https://www.opentosca.org/. Accessed 07 Sept 2020

  58. Otterbach, J.S., et al.: Unsupervised machine learning on a hybrid quantum computer (2017). arXiv:1712.05771

  59. Peruzzo, A., et al.: A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5 (2014). Article number: 4213

    Google Scholar 

  60. Plesch, M., Brukner, Č: Quantum-state preparation with universal gate decompositions. Phys. Rev. A 83, 032302 (2011)

    Article  Google Scholar 

  61. Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018)

    Article  Google Scholar 

  62. PyQuil (2020). https://github.com/rigetti/pyquil. Accessed 07 Sept 2020

  63. PyTorch (2020). https://pytorch.org/. Accessed 07 Sept 2020

  64. Qiskit (2020). https://qiskit.org/. Accessed 07 Sept 2020

  65. Rahaman, M., Islam, M.M.: A review on progress and problems of quantum computing as a service (QcaaS) in the perspective of cloud computing. Glob. J. Comput. Sci. Technol. 15(4) (2015)

    Google Scholar 

  66. Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum support vector machine for big data classification. Phys. Rev. Lett. 113, 130503 (2014)

    Article  Google Scholar 

  67. Romero, J., Olson, J.P., Aspuru-Guzik, A.: Quantum autoencoders for efficient compression of quantum data (2017). arXiv:1612.02806v2

  68. Saatkamp, K., Breitenbücher, U., Kopp, O., Leymann, F.: Method, formalization, and algorithms to split topology models for distributed cloud application deployments. Computing 102(2), 343–363 (2019). https://doi.org/10.1007/s00607-019-00721-8

    Article  MathSciNet  Google Scholar 

  69. Saatkamp, K., Breitenbücher, U., Kopp, O., Leymann, F.: Topology splitting and matching for multi-cloud deployments. In: Proceedings of the 7th International Conference on Cloud Computing and Service Science (CLOSER 2017), pp. 247–258. SciTePress (2017)

    Google Scholar 

  70. Salm, M., Barzen, J., Breitenbücher, U., Leymann, F., Weder, B., Wild, K.: A roadmap for automating the selection of quantum computers for quantum algorithms (2020). arXiv:2003.13409

  71. Scherer, A., Valiron, B., Mau, S.-C., Alexander, S., Van den Berg, E., Chapuran, T.E.: Concrete resource analysis of the quantum linear-system algorithm used to compute the electromagnetic scattering cross section of a 2D target. Quantum Inf. Process. 16(3) (2017). Article number: 60 https://doi.org/10.1007/s11128-016-1495-5

  72. Schuld, M., Fingerhuth, M., Petruccione, F.: Implementing a distance-based classifier with a quantum interference circuit (2017). arXiv:1703.10793

  73. Schuld, M., Killoran, N.: Quantum machine learning in feature Hilbert spaces. Phys. Rev. Lett. 122, 040504 (2019)

    Article  Google Scholar 

  74. Schuld, M., Sinayskiy, I., Petruccione, F.: Quantum computing for pattern classification. In: Pham, D.-N., Park, S.-B. (eds.) PRICAI 2014. LNCS (LNAI), vol. 8862, pp. 208–220. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13560-1_17

    Chapter  Google Scholar 

  75. Schuld, M., Sinayskiy, I., Petruccione, F.: An introduction to quantum machine learning. Contemp. Phys. 56(2), 172–185 (2015)

    Article  Google Scholar 

  76. Shende, V.V., Markov, I.L.: Quantum circuits for incompletely specified two-qubit operators. Quantum Inf. Comput. 5(1), 049–057 (2005)

    Google Scholar 

  77. Smith, R.S., Curtis, M.J., Zeng, W.J.: A practical quantum instruction set architecture (2016). arXiv:1608.03355

  78. Steiger, D.S., Haner, T., Troyer, M.: ProjectQ: an open source software framework for quantum computing. Quantum 2, 49 (2018)

    Article  Google Scholar 

  79. Suchara, M., Kubiatowicz, J., Faruque, A., Chong, F.T., Lai, C.-Y., Paz, G.: QuRE: the quantum resource estimator toolbox. In: 2013 IEEE 31st International Conference on Computer Design (ICCD), pp. 419–426. IEEE (2013)

    Google Scholar 

  80. Svore, K.M., Aho, A.V., Cross, A.W., Chuang, I., Markov, I.L.: A layered software architecture for quantum computing design tools. Computer 39(1), 74–83 (2006)

    Article  Google Scholar 

  81. Taherkhania, A., Cosmaa, G., McGinnity, T.M.: Deep-FS: a feature selection algorithm for Deep Boltzmann Machines. Neurocomputing 322, 22–37 (2018)

    Article  Google Scholar 

  82. TensorFlow (2020). https://www.tensorflow.org/. Accessed 07 Sept 2020

  83. TensorFlow Quantum (2020). https://www.tensorflow.org/quantum. Accessed 07 Sept 2020

  84. Weigold, M., Barzen, J., Breitenbücher, U., Falkenthal, M., Leymann, F., Wild, K.: Pattern views: concept and tooling for interconnected pattern languages (2020). arXiv:2003.09127

  85. Wu, Z., Palmer, M.: Verb semantics and lexical selection. In: Proceedings of the 32nd Annual Meeting of the Associations for Computational Linguistics, Las Cruces, New Mexico (1994)

    Google Scholar 

  86. Zhang, P., Li, S., Zhou, Y.: An algorithm of quantum restricted Boltzmann machine network based on quantum gates and its application. Shock Vibr. 2015 (2015). Article ID 756969. https://doi.org/10.1155/2015/756969

  87. Zhang, Y., Deng, H., Li, Q., Song, H., Nie, L.: Optimizing quantum programs against decoherence: delaying qubits into quantum superposition. In: 2019 International Symposium on Theoretical Aspects of Software Engineering (TASE), pp. 184–191. IEEE (2019)

    Google Scholar 

  88. Zhou, L., Wang, S.-T., Choi, S., Pichler, H., Lukin, M.D.: Quantum approximate optimization algorithm: performance, mechanism, and implementation on near-term devices (2019). arXiv:1812.01041v2

Download references

Acknowledgements

We are grateful to Marie Salm and Manuela Weigold for discussing several subjects of this paper. Also, our thanks go to Philipp Wundrack, Marcel Messer, Daniel Fink and Tino Strehl for their valuable input and implementing several aspects of our use case.

This work was partially funded by the BMWi project PlanQK (01MK20005N) and the Terra Incognita project Quantum Humanities funded by the University of Stuttgart.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johanna Barzen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barzen, J., Leymann, F., Falkenthal, M., Vietz, D., Weder, B., Wild, K. (2021). Relevance of Near-Term Quantum Computing in the Cloud: A Humanities Perspective. In: Ferguson, D., Pahl, C., Helfert, M. (eds) Cloud Computing and Services Science. CLOSER 2020. Communications in Computer and Information Science, vol 1399. Springer, Cham. https://doi.org/10.1007/978-3-030-72369-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72369-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72368-2

  • Online ISBN: 978-3-030-72369-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics