Abstract
As quantum computers are becoming real, they have the inherent potential to significantly impact many application domains. In this paper we outline the fundamentals about programming quantum computers and show that quantum programs are typically hybrid consisting of a mixture of classical parts and quantum parts. With the advent of quantum computers in the cloud, the cloud is a fine environment for performing quantum programs. The tool chain available for creating and running such programs is sketched. As an exemplary problem we discuss efforts to implement quantum programs that are hardware independent. A use case from quantum humanities is discussed, hinting which applications in this domain can already be used in the field of (quantum) machine learning. Finally, a collaborative platform for solving problems with quantum computers – that is currently under construction – is presented.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aimeur, E., Brassard, G., Gambs, S.: Quantum clustering algorithms. In: Proceedings of the 24th International Conference on Machine Learning, Corvallis, OR (2007)
Amin, M.A., Andriyash, E., Rolfe, J., Kulchytskyy, B., Melko, R.: Quantum Boltzmann machine. Phys. Rev. X 8, 021050 (2018)
Ankerst, M., Breunig, M.M., Kriegel, H., Sander, J.: OPTICS: ordering points to identify the clustering structure. In: ACM SIGMOD International Conference on Management of Data. ACM Press (1999)
Barzen, J.: Wenn Kostüme sprechen – Musterforschung in den Digital Humanities am Beispiel vestimentärer Kommunikation im Film. Dissertation University Cologne (2018). (in German)
Barzen, J.: Taxonomien kostümrelevanter Parameter: Annäherung an eine Ontologisierung der Domäne des Filmkostüms. Technical report, University Stuttgart, no. 2013/04 (2013). (in German)
Barzen, J., Breitenbücher, U., Eusterbrock, L., Falkenthal, M., Hentschel, F., Leymann, F.: The vision for MUSE4Music. Applying the MUSE method in musicology. Comput. Sci. Res. Dev. 32, 323–328 (2017). https://doi.org/10.1007/s00450-016-0336-1. Proceedings of SummerSoC 2016
Barzen, J., Falkenthal, M., Leymann, F.: Wenn Kostüme sprechen könnten: MUSE - Ein musterbasierter Ansatz an die vestimentäre Kommunikation im Film. In: Bockwinkel, P., Nickel, B., Viehhauser, G. (eds.) Digital Humanities. Perspektiven der Praxis, Frank & Timme (2018). (in German)
Barzen, J., Leymann, F.: Quantum humanities: a first use case for quantum-ML in media science. In: ISAAI 2019 Proceedings—Artificial Intelligence (2020). Digitale Welt 4(1)
Barzen, J., Leymann, F.: Quantum humanities: a vision for quantum computing in digital humanities. SICS Softw.-Intensive Cyber-Phys. Syst. 35(1–2), 153–158 (2019). https://doi.org/10.1007/s00450-019-00419-4
Berry, D. (ed.): Understanding Digital Humanities. Palgrave, London (2012)
Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum machine learning. Nature 549, 195–202 (2017)
Binz, T., et al.: OpenTOSCA – a runtime for TOSCA-based cloud applications. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 692–695. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45005-1_62
Booth Jr., J.: Quantum compiler optimizations (2012). arXiv:1206.3348
Ciliberto, C., et al.: Quantum machine learning: a classical perspective. Proc. Roy. Soc. A 474 (2018). https://doi.org/10.1098/rspa.2017.0551
Cloudify (2020). https://cloudify.co/. Accessed 07 Sept 2020
Cox, T.F., Cox, M.A.A.: Multidimensional Scaling. Chapman and Hall, London (2001)
Crooks, G.E.: Performance of the quantum approximate optimization algorithm on the maximum cut problem (2018). arXiv:1811.08419v1
Dunjko, V., Taylor, J.M., Briegel, H.J.: Quantum-enhanced machine learning. Phys. Rev. Lett. 117, 130501 (2016)
Falkenthal, M., et al.: Pattern research in the digital humanities: how data mining techniques support the identification of costume patterns. Comput. Sci. Res. Dev. 32, 311–321 (2016). https://doi.org/10.1007/s00450-016-0331-6. Proceedings of SummerSoC 2016
Falkenthal, M., Barzen, J., Breitenbücher, U., Fehling, C., Leymann, F.: Effective pattern application: validating the concept of solution implementation in different domains. Int. J. Adv. Softw. 7(3&4), 710–726 (2014)
Falkenthal, M., et al.: Leveraging pattern applications via pattern refinement. In: Proceedings of the International Conference on Pursuit of Pattern Languages for Social Change (PURPLSOC), pp. 38–61. epubli GmbH (2016)
Falkenthal, M., Barzen, J., Breitenbücher, U., Leymann, F.: Solution languages: easing pattern composition in different domains. Int. J. Adv. Softw. 10(3&4), 263–274 (2017)
Falkenthal, M., et al.: Datenanalyse in den Digital Humanities – Eine Annäherung an Kostümmuster mittels OLAP Cubes. In: Datenbanksysteme für Business, Technologie und Web (BTW), 16. Fachtagung des GI-Fachbereichs “Datenbanken und Informationssysteme” (2015). (in German)
Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algorithm. MIT-CTP/4610 (2014)
Ghobadi, R., Oberoi, J.S., Zahedinejhad, E.: The power of one qubit in machine learning (2019). arXiv:1905.01390v2
Grimsley, H.R., Economou, S.E., Barnes, E., Mayhall, N.J.: An adaptive variational algorithm for exact molecular simulations on a quantum computer. Nat. Commun. 10 (2019). Article number: 3007
Guerreschi, G.G., Smelyanskiy, M.: Practical optimization for hybrid quantum-classical algorithms (2017). arXiv:1701.01450v1
Havenstein, Ch., Thomas, D., Chandrasekaran, S.: Comparisons of performance between quantum and classical machine learning. SMU Data Sci. Rev. 1(4), 11 (2018)
Häner, T., Steiger, D.S., Svore, K., Troyer, M.: A software methodology for compiling quantum programs. Quantum Sci. Technol. 3(2), 020501 (2018)
Heyfron, L.E., Campbell, E.T.: An efficient quantum compiler that reduces T count. Quantum Sci. Technol. 4(1), 015004 (2018)
Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)
Hinton, G.E.: A practical guide to training restricted Boltzmann machines. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, pp. 599–619. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35289-8_32
Hofmann, Th., Schölkopf, B., Smola, A.J.: Kernel methods in machine learning. Ann. Stat. 36(3), 1171–1220 (2008)
Itoko, T., Raymond, R., Imamichi, T., Matsuo, A.: Optimization of quantum circuit mapping using gate transformation and commutation. Integration 70, 43–50 (2020)
Javadi-Abhari, A., Nation, P., Gambetta, J.: Qiskit – write once, target multiple architectures (2019). https://www.ibm.com/blogs/research/2019/11/qiskit-for-multiple-architectures/. Accessed 07 Sept 2020
Javadi-Abhari, A., et al.: ScaffCC: scalable compilation and analysis of quantum programs. Parallel Comput. 45, 2–17 (2015)
Jozsa, R., Linden, N.: On the role of entanglement in quantum-computational speed-up. Proc. Roy. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 459(2036), 2011–2032 (2003)
Laflamme, R., Miquel, C., Paz, J.P., Zurek, W.H.: Perfect quantum error correcting code. Phys. Rev. Lett. 77(1), 198 (1996)
LaRose, M.: Overview and comparison of gate level quantum software platforms (2019). arXiv:1807.02500v2
Leymann, F.: Towards a pattern language for quantum algorithms. In: Feld, S., Linnhoff-Popien, C. (eds.) QTOP 2019. LNCS, vol. 11413, pp. 218–230. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14082-3_19
Leymann, F., Barzen, J.: The bitter truth about gate-based quantum algorithms in the NISQ era. Quantum Sci. Technol. 5, 044007 (2020)
Leymann, F., Barzen, J.: Pattern atlas (2020). arXiv:2006.05120
Leymann, F., Barzen, J., Falkenthal, M.: Towards a platform for sharing quantum software. In: 2019 Proceedings of the 13th Advanced Summer School on Service Oriented Computing. IBM Research Division (2019)
Leymann, F., Barzen, J., Falkenthal, M., Vietz, D., Weder, B., Wild, K.: Quantum in the cloud: application potentials and research opportunities. In: Proceedings of the 10th International Conference on Cloud Computing and Services Science (CLOSER 2020), pp. 9–24. SciTePress (2020)
Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum principal component analysis. Nat. Phys. 10, 631 (2014)
Manning, C., Raghavan, P., Schütze, H.: An Introduction to Information Retrieval. Cambridge University Press, Cambridge (2009)
Maslov, D., Dueck, G.W., Miller, D.M., Negrevergne, C.: Quantum circuit simplification and level compaction. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 27(3), 436–444 (2008)
McCaskey, A.J., Lyakh, D., Dumitrescu, E., Powers, S., Humble, T.S.: XACC: a system-level software infrastructure for heterogeneous quantum classical computing. Quantum Sci. Technol. 5, 024002 (2020)
Mitarai, K., Kitagawa, M., Fujii, K.: Quantum analog-digital conversion. Phys. Rev. A 99(1), 012301 (2019). American Physical Society
Mohseni, M., Read, P., Neven, H.: Commercialize early quantum technologies. Nature 543(7644), 171–175 (2017)
Montanaro, A.: Quantum algorithms: an overview. npj Quantum Inf. 2 (2016). Article number: 15023
MUSE (2020). https://www.iaas.uni-stuttgart.de/forschung/projekte/muse/. Accessed 07 Sept 2020
MUSE GitHub (2020). https://github.com/Muster-Suchen-und-Erkennen/muse-docker. Accessed 07 Sept 2020
National Academies of Sciences, Engineering, and Medicine: Quantum Computing: Progress and Prospects. The National Academies Press, Washington, DC (2019)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2016)
OASIS: TOSCA simple profile in YAML version 1.2. OASIS (2019). Accessed 07 Sept 2020
OpenTOSCA (2020). https://www.opentosca.org/. Accessed 07 Sept 2020
Otterbach, J.S., et al.: Unsupervised machine learning on a hybrid quantum computer (2017). arXiv:1712.05771
Peruzzo, A., et al.: A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5 (2014). Article number: 4213
Plesch, M., Brukner, Č: Quantum-state preparation with universal gate decompositions. Phys. Rev. A 83, 032302 (2011)
Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018)
PyQuil (2020). https://github.com/rigetti/pyquil. Accessed 07 Sept 2020
PyTorch (2020). https://pytorch.org/. Accessed 07 Sept 2020
Qiskit (2020). https://qiskit.org/. Accessed 07 Sept 2020
Rahaman, M., Islam, M.M.: A review on progress and problems of quantum computing as a service (QcaaS) in the perspective of cloud computing. Glob. J. Comput. Sci. Technol. 15(4) (2015)
Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum support vector machine for big data classification. Phys. Rev. Lett. 113, 130503 (2014)
Romero, J., Olson, J.P., Aspuru-Guzik, A.: Quantum autoencoders for efficient compression of quantum data (2017). arXiv:1612.02806v2
Saatkamp, K., Breitenbücher, U., Kopp, O., Leymann, F.: Method, formalization, and algorithms to split topology models for distributed cloud application deployments. Computing 102(2), 343–363 (2019). https://doi.org/10.1007/s00607-019-00721-8
Saatkamp, K., Breitenbücher, U., Kopp, O., Leymann, F.: Topology splitting and matching for multi-cloud deployments. In: Proceedings of the 7th International Conference on Cloud Computing and Service Science (CLOSER 2017), pp. 247–258. SciTePress (2017)
Salm, M., Barzen, J., Breitenbücher, U., Leymann, F., Weder, B., Wild, K.: A roadmap for automating the selection of quantum computers for quantum algorithms (2020). arXiv:2003.13409
Scherer, A., Valiron, B., Mau, S.-C., Alexander, S., Van den Berg, E., Chapuran, T.E.: Concrete resource analysis of the quantum linear-system algorithm used to compute the electromagnetic scattering cross section of a 2D target. Quantum Inf. Process. 16(3) (2017). Article number: 60 https://doi.org/10.1007/s11128-016-1495-5
Schuld, M., Fingerhuth, M., Petruccione, F.: Implementing a distance-based classifier with a quantum interference circuit (2017). arXiv:1703.10793
Schuld, M., Killoran, N.: Quantum machine learning in feature Hilbert spaces. Phys. Rev. Lett. 122, 040504 (2019)
Schuld, M., Sinayskiy, I., Petruccione, F.: Quantum computing for pattern classification. In: Pham, D.-N., Park, S.-B. (eds.) PRICAI 2014. LNCS (LNAI), vol. 8862, pp. 208–220. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13560-1_17
Schuld, M., Sinayskiy, I., Petruccione, F.: An introduction to quantum machine learning. Contemp. Phys. 56(2), 172–185 (2015)
Shende, V.V., Markov, I.L.: Quantum circuits for incompletely specified two-qubit operators. Quantum Inf. Comput. 5(1), 049–057 (2005)
Smith, R.S., Curtis, M.J., Zeng, W.J.: A practical quantum instruction set architecture (2016). arXiv:1608.03355
Steiger, D.S., Haner, T., Troyer, M.: ProjectQ: an open source software framework for quantum computing. Quantum 2, 49 (2018)
Suchara, M., Kubiatowicz, J., Faruque, A., Chong, F.T., Lai, C.-Y., Paz, G.: QuRE: the quantum resource estimator toolbox. In: 2013 IEEE 31st International Conference on Computer Design (ICCD), pp. 419–426. IEEE (2013)
Svore, K.M., Aho, A.V., Cross, A.W., Chuang, I., Markov, I.L.: A layered software architecture for quantum computing design tools. Computer 39(1), 74–83 (2006)
Taherkhania, A., Cosmaa, G., McGinnity, T.M.: Deep-FS: a feature selection algorithm for Deep Boltzmann Machines. Neurocomputing 322, 22–37 (2018)
TensorFlow (2020). https://www.tensorflow.org/. Accessed 07 Sept 2020
TensorFlow Quantum (2020). https://www.tensorflow.org/quantum. Accessed 07 Sept 2020
Weigold, M., Barzen, J., Breitenbücher, U., Falkenthal, M., Leymann, F., Wild, K.: Pattern views: concept and tooling for interconnected pattern languages (2020). arXiv:2003.09127
Wu, Z., Palmer, M.: Verb semantics and lexical selection. In: Proceedings of the 32nd Annual Meeting of the Associations for Computational Linguistics, Las Cruces, New Mexico (1994)
Zhang, P., Li, S., Zhou, Y.: An algorithm of quantum restricted Boltzmann machine network based on quantum gates and its application. Shock Vibr. 2015 (2015). Article ID 756969. https://doi.org/10.1155/2015/756969
Zhang, Y., Deng, H., Li, Q., Song, H., Nie, L.: Optimizing quantum programs against decoherence: delaying qubits into quantum superposition. In: 2019 International Symposium on Theoretical Aspects of Software Engineering (TASE), pp. 184–191. IEEE (2019)
Zhou, L., Wang, S.-T., Choi, S., Pichler, H., Lukin, M.D.: Quantum approximate optimization algorithm: performance, mechanism, and implementation on near-term devices (2019). arXiv:1812.01041v2
Acknowledgements
We are grateful to Marie Salm and Manuela Weigold for discussing several subjects of this paper. Also, our thanks go to Philipp Wundrack, Marcel Messer, Daniel Fink and Tino Strehl for their valuable input and implementing several aspects of our use case.
This work was partially funded by the BMWi project PlanQK (01MK20005N) and the Terra Incognita project Quantum Humanities funded by the University of Stuttgart.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Barzen, J., Leymann, F., Falkenthal, M., Vietz, D., Weder, B., Wild, K. (2021). Relevance of Near-Term Quantum Computing in the Cloud: A Humanities Perspective. In: Ferguson, D., Pahl, C., Helfert, M. (eds) Cloud Computing and Services Science. CLOSER 2020. Communications in Computer and Information Science, vol 1399. Springer, Cham. https://doi.org/10.1007/978-3-030-72369-9_2
Download citation
DOI: https://doi.org/10.1007/978-3-030-72369-9_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-72368-2
Online ISBN: 978-3-030-72369-9
eBook Packages: Computer ScienceComputer Science (R0)