Abstract
This paper presents the ideas for the 2021 ImageCLEF lab that will be organized as part of the Conference and Labs of the Evaluation Forum—CLEF Labs 2021 in Bucharest, Romania. ImageCLEF is an ongoing evaluation initiative (active since 2003) that promotes the evaluation of technologies for annotation, indexing and retrieval of visual data with the aim of providing information access to large collections of images in various usage scenarios and domains. In 2021, the 19th edition of ImageCLEF will organize four main tasks: (i) a Medical task addressing visual question answering, a concept annotation and a tuberculosis classification task, (ii) a Coral task addressing the annotation and localisation of substrates in coral reef images, (iii) a DrawnUI task addressing the creation of websites from either a drawing or a screenshot by detecting the different elements present on the design and a new (iv) Aware task addressing the prediction of real-life consequences of online photo sharing. The strong participation in 2020, despite the COVID pandemic, with over 115 research groups registering and 40 submitting over 295 runs for the tasks shows an important interest in this benchmarking campaign. We expect the new tasks to attract at least as many researchers for 2021.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Beltramelli, T.: pix2code: generating code from a graphical user interface screenshot. In: Proceedings of the ACM SIGCHI Symposium on Engineering Interactive Computing Systems, pp. 1–9 (2018)
Ben Abacha, A., Datla, V.V., Hasan, S.A., Demner-Fushman, D., Müller, H.: Overview of the VQA-med task at imageCLEF 2020: visual question answering and generation in the medical domain. In: CLEF 2020 Working Notes. CEUR Workshop Proceedings, CEUR-WS.org, Thessaloniki, Greece, 22–25 September 2020
Chamberlain, J., Campello, A., Wright, J.P., Clift, L.G., Clark, A., García Seco de Herrera, A.: Overview of ImageCLEFcoral 2019 task. In: CLEF2019 Working Notes. CEUR Workshop Proceedings, Lugano, Switzerland, vol. 2380. CEUR-WS.org (2019). http://ceur-ws.org
Chamberlain, J., Campello, A., Wright, J.P., Clift, L.G., Clark, A., García Seco de Herrera, A.: Overview of the ImageCLEFcoral 2020 task: automated coral reef image annotation. In: CLEF2020 Working Notes. CEUR Workshop Proceedings, Thessaloniki, Greece, 22–25 September 2020, vol. 1166. CEUR-WS.org. http://ceur-ws.org
Chen, C., Su, T., Meng, G., Xing, Z., Liu, Y.: From UI Design Image to GUI Skeleton: a Neural Machine Translator to Bootstrap Mobile GUI Implementation. In: International Conference on Software Engineering, vol. 6 (2018)
Clough, P., Müller, H., Sanderson, M.: The CLEF 2004 cross-language image retrieval track. In: Peters, C., Clough, P., Gonzalo, J., Jones, G.J.F., Kluck, M., Magnini, B. (eds.) CLEF 2004. LNCS, vol. 3491, pp. 597–613. Springer, Heidelberg (2005). https://doi.org/10.1007/11519645_59
Clough, P., Sanderson, M.: The CLEF 2003 cross language image retrieval task. In: Proceedings of the Cross Language Evaluation Forum (CLEF 2003) (2004)
Dicente Cid, Y., Jiménez del Toro, O.A., Depeursinge, A., Müller, H.: Efficient and fully automatic segmentation of the lungs in CT volumes. In: Goksel, O., Jiménez del Toro, O.A., Foncubierta-Rodríguez, A., Müller, H. (eds.) Proceedings of the VISCERAL Anatomy Grand Challenge at the 2015 IEEE ISBI, pp. 31–35. CEUR Workshop Proceedings, CEUR-WS.org, May 2011. http://ceur-ws.org
Fichou, D., et al.: Overview of ImageCLEFdrawnUI 2020: the detection and recognition of hand drawn website UIs task. In: CLEF2020 Working Notes, CEUR Workshop Proceedings, Thessaloniki, CEUR-WS. org (2020)
Ionescu, B., et al.: ImageCLEF 2019: multimedia retrieval in medicine, lifelogging, security and nature. In: Crestani, F., et al. (eds.) CLEF 2019. LNCS, vol. 11696, pp. 358–386. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28577-7_28
Ionescu, B., et al.: Overview of the ImageCLEF 2020: multimedia retrieval in medical, lifelogging, nature, and internet applications. In: Arampatzis, A., et al. (eds.) CLEF 2020. LNCS, vol. 12260, pp. 311–341. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58219-7_22
Kalpathy-Cramer, J., et al.: Evaluating performance of biomedical image retrieval systems: overview of the medical image retrieval task at ImageCLEF 2004–2014. Computer. Med. Imaging Graph. 39(0), 55–61 (2015)
Kozlovski, S., Liauchuk, V., Dicente Cid, Y., Tarasau, A., Kovalev, V., Müller, H.: Overview of ImageCLEFtuberculosis 2020 - automatic CT-based report generation. In: CLEF2020 Working Notes. CEUR Workshop Proceedings, Thessaloniki, Greece, 22–25 September 2020. CEUR-WS.org http://ceur-ws.org
Markonis, D., et al.: A survey on visual information search behavior and requirements of radiologists. Methods Inf. Med. 51(6), 539–548 (2012)
Müller, H., Clough, P., Deselaers, T., Caputo, B. (eds.): ImageCLEF - Experimental Evaluation in Visual Information Retrieval. The Springer International Series On Information Retrieval, vol. 32. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15181-1
Nguyen, V.K., Popescu, A., Deshayes-Chossart, J.: Unveiling real-life effects of online photo sharing. arXiv preprint arXiv:2012.13180 (2020)
Pelka, O., Friedrich, C.M., García Seco de Herrera, A., Müller, H.: Overview of the ImageCLEFmed 2020 concept prediction task: Medical image understanding. In: CLEF2020 Working Notes. CEUR Workshop Proceedings, vol. 1166. CEUR-WS.org, Thessaloniki, Greece, 22–25 September 2020
Pelka, O., Koitka, S., Rückert, J., Nensa, F., Friedrich, C.M.: Radiology objects in context (ROCO): a multimodal image dataset. In: Stoyanov, D., et al. (eds.) LABELS/CVII/STENT 2018. LNCS, vol. 11043, pp. 180–189. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01364-6_20
Thomee, B., et al.: Yfcc100m: the new data in multimedia research. Commun. ACM 59(2), 64–73 (2016)
Tsikrika, T., de Herrera, A.G.S., Müller, H.: Assessing the scholarly impact of ImageCLEF. In: Forner, P., Gonzalo, J., Kekäläinen, J., Lalmas, M., de Rijke, M. (eds.) CLEF 2011. LNCS, vol. 6941, pp. 95–106. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23708-9_12
Tsikrika, T., Larsen, B., Müller, H., Endrullis, S., Rahm, E.: The scholarly impact of CLEF (2000–2009). In: Forner, P., Müller, H., Paredes, R., Rosso, P., Stein, B. (eds.) CLEF 2013. LNCS, vol. 8138, pp. 1–12. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40802-1_1
Acknowledgement
Part of this work is supported under the H2020 AI4Media “A European Excellence Centre for Media, Society and Democracy” project, contract \(\#951911\).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Ionescu, B. et al. (2021). The 2021 ImageCLEF Benchmark: Multimedia Retrieval in Medical, Nature, Internet and Social Media Applications. In: Hiemstra, D., Moens, MF., Mothe, J., Perego, R., Potthast, M., Sebastiani, F. (eds) Advances in Information Retrieval. ECIR 2021. Lecture Notes in Computer Science(), vol 12657. Springer, Cham. https://doi.org/10.1007/978-3-030-72240-1_72
Download citation
DOI: https://doi.org/10.1007/978-3-030-72240-1_72
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-72239-5
Online ISBN: 978-3-030-72240-1
eBook Packages: Computer ScienceComputer Science (R0)