Coreference Resolution in Research Papers from Multiple Domains | SpringerLink
Skip to main content

Coreference Resolution in Research Papers from Multiple Domains

  • Conference paper
  • First Online:
Advances in Information Retrieval (ECIR 2021)

Abstract

Coreference resolution is essential for automatic text understanding to facilitate high-level information retrieval tasks such as text summarisation or question answering. Previous work indicates that the performance of state-of-the-art approaches (e.g. based on BERT) noticeably declines when applied to scientific papers. In this paper, we investigate the task of coreference resolution in research papers and subsequent knowledge graph population. We present the following contributions: (1) We annotate a corpus for coreference resolution that comprises 10 different scientific disciplines from Science, Technology, and Medicine (STM); (2) We propose transfer learning for automatic coreference resolution in research papers; (3) We analyse the impact of coreference resolution on knowledge graph (KG) population; (4) We release a research KG that is automatically populated from 55,485 papers in 10 STM domains. Comprehensive experiments show the usefulness of the proposed approach. Our transfer learning approach considerably outperforms state-of-the-art baselines on our corpus with an F1 score of 61.4 (+11.0), while the evaluation against a gold standard KG shows that coreference resolution improves the quality of the populated KG significantly with an F1 score of 63.5 (+21.8).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 13727
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 17159
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Seventh Message Understanding Conference: Proceedings of a Conference Held in Fairfax, Virginia, USA, MUC 1998, 29 April–1 May 1998. ACL (1998). https://www.aclweb.org/anthology/volumes/M98-1/

  2. Augenstein, I., Das, M., Riedel, S., Vikraman, L., McCallum, A.: Semeval 2017 task 10: Scienceie - extracting keyphrases and relations from scientific publications. In: Bethard, S., Carpuat, M., Apidianaki, M., Mohammad, S.M., Cer, D.M., Jurgens, D. (eds.) Proceedings of the 11th International Workshop on Semantic Evaluation, SemEval@ACL 2017, Vancouver, Canada, 3–4 Aug 2017, pp. 546–555. Association for Computational Linguistics (2017). https://doi.org/10.18653/v1/S17-2091

  3. Bagga, A., Baldwin, B.: Algorithms for scoring coreference chains. In: The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference, pp. 563–566 (1998)

    Google Scholar 

  4. Beltagy, I., Lo, K., Cohan, A.: SciBERT: a pretrained language model for scientific text. In: Inui, K., Jiang, J., Ng, V., Wan, X. (eds.) Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, 3–7 Nov 2019, pp. 3613–3618. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/D19-1371

  5. Bornmann, L., Mutz, R.: Growth rates of modern science: a bibliometric analysis based on the number of publications and cited references. J. Assoc. Inf. Sci. Technol. 66(11), 2215–2222 (2015). https://doi.org/10.1002/asi.23329

    Article  Google Scholar 

  6. Brack, A., D’Souza, J., Hoppe, A., Auer, S., Ewerth, R.: Domain-independent extraction of scientific concepts from research articles. In: Jose, J.M., et al. (eds.) ECIR 2020, Part I. LNCS, vol. 12035, pp. 251–266. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45439-5_17

    Chapter  Google Scholar 

  7. Chaimongkol, P., Aizawa, A., Tateisi, Y.: Corpus for coreference resolution on scientific papers. In: Calzolari, N., et al. (eds.) Proceedings of the Ninth International Conference on Language Resources and Evaluation, LREC 2014, Reykjavik, Iceland, 26–31 May 2014, pp. 3187–3190. European Language Resources Association (ELRA) (2014). http://www.lrec-conf.org/proceedings/lrec2014/summaries/286.html

  8. Chambers, A.: Statistical Models for Text Classification and Clustering: Applications and Analysis. Ph.D. thesis, University of California, Irvine (2013)

    Google Scholar 

  9. Clark, K., Manning, C.D.: Entity-centric coreference resolution with model stacking. In: ACL (1), pp. 1405–1415. The Association for Computer Linguistics (2015)

    Google Scholar 

  10. Cohen, J.: A coefficient of agreement for nominal scales. Educ. Psychol. Measur. 20(1), 37–46 (1960)

    Article  Google Scholar 

  11. Cohen, K.B., et al.: Coreference annotation and resolution in the colorado richly annotated full text (CRAFT) corpus of biomedical journal articles. BMC Bioinform. 18(1), 372:1–372:14 (2017). https://doi.org/10.1186/s12859-017-1775-9

    Article  Google Scholar 

  12. Denis, P., Baldridge, J.: Specialized models and ranking for coreference resolution. In: 2008 Conference on Empirical Methods in Natural Language Processing, EMNLP 2008, Proceedings of the Conference, 25–27 Oct 2008, Honolulu, Hawaii, USA. A meeting of SIGDAT, a Special Interest Group of the ACL, pp. 660–669. ACL (2008). https://www.aclweb.org/anthology/D08-1069/

  13. Dessì, D., Osborne, F., Reforgiato Recupero, D., Buscaldi, D., Motta, E., Sack, H.: AI-KG: an automatically generated knowledge graph of artificial intelligence. In: Pan, J.Z., et al. (eds.) ISWC 2020, Part II. LNCS, vol. 12507, pp. 127–143. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62466-8_9

    Chapter  Google Scholar 

  14. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Burstein, J., Doran, C., Solorio, T. (eds.) Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, 2–7 June 2019, vol. 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/n19-1423

  15. Doddington, G.R., Mitchell, A., Przybocki, M.A., Ramshaw, L.A., Strassel, S.M., Weischedel, R.M.: The automatic content extraction (ACE) program - tasks, data, and evaluation. In: Proceedings of the Fourth International Conference on Language Resources and Evaluation, LREC 2004, 26–28 May 2004, Lisbon, Portugal. European Language Resources Association (2004). http://www.lrec-conf.org/proceedings/lrec2004/summaries/5.htm

  16. D’Souza, J., Hoppe, A., Brack, A., Jaradeh, M.Y., Auer, S., Ewerth, R.: The STEM-ECR dataset: grounding scientific entity references in STEM scholarly content to authoritative encyclopedic and lexicographic sources. In: Calzolari, N., et al. (eds.) Proceedings of The 12th Language Resources and Evaluation Conference, LREC 2020, Marseille, France, 11–16 May 2020, pp. 2192–2203. European Language Resources Association (2020), https://www.aclweb.org/anthology/2020.lrec-1.268/

  17. Elsevier Labs: Elsevier OA STM corpus. https://github.com/elsevierlabs/OA-STM-Corpus (2017). Accessed 15 July 2020

  18. Fellbaum, C. (ed.): WordNet: An Electronic Lexical Database. Language, Speech, and Communication. MIT Press, Cambridge (1998)

    Google Scholar 

  19. Fisas, B., Saggion, H., Ronzano, F.: On the discoursive structure of computer graphics research papers. In: Meyers, A., Rehbein, I., Zinsmeister, H. (eds.) Proceedings of The 9th Linguistic Annotation Workshop, LAW@NAACL-HLT 2015, 5 June 2015, Denver, Colorado, USA, pp. 42–51. The Association for Computer Linguistics (2015). https://doi.org/10.3115/v1/w15-1605

  20. Gábor, K., Buscaldi, D., Schumann, A., QasemiZadeh, B., Zargayouna, H., Charnois, T.: Semeval-2018 task 7: semantic relation extraction and classification in scientific papers. In: Apidianaki, M., Mohammad, S.M., May, J., Shutova, E., Bethard, S., Carpuat, M. (eds.) Proceedings of The 12th International Workshop on Semantic Evaluation, SemEval@NAACL-HLT 2018, New Orleans, Louisiana, USA, 5–6 June 2018, pp. 679–688. Association for Computational Linguistics (2018). https://doi.org/10.18653/v1/s18-1111

  21. Joshi, M., Chen, D., Liu, Y., Weld, D.S., Zettlemoyer, L., Levy, O.: SpanBERT: improving pre-training by representing and predicting spans. Trans. Assoc. Comput. Linguistics 8, 64–77 (2020). https://transacl.org/ojs/index.php/tacl/article/view/1853

    Article  Google Scholar 

  22. Joshi, M., Levy, O., Zettlemoyer, L., Weld, D.S.: BERT for coreference resolution: Baselines and analysis. In: Inui, K., Jiang, J., Ng, V., Wan, X. (eds.) Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, 3–7 Nov 2019, pp. 5802–5807. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/D19-1588

  23. Kim, J., Nguyen, N.L.T., Wang, Y., Tsujii, J., Takagi, T., Yonezawa, A.: The genia event and protein coreference tasks of the BioNLP shared task 2011. BMC Bioinform. 13(S–11), S1 (2012). https://doi.org/10.1186/1471-2105-13-S11-S1

    Article  Google Scholar 

  24. Kopeć, M., Ogrodniczuk, M.: Inter-annotator agreement in coreference annotation of polish. In: Sobecki, J., Boonjing, V., Chittayasothorn, S. (eds.) Advanced Approaches to Intelligent Information and Database Systems. SCI, vol. 551, pp. 149–158. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05503-9_15

    Chapter  Google Scholar 

  25. Lee, K., He, L., Lewis, M., Zettlemoyer, L.: End-to-end neural coreference resolution. In: Palmer, M., Hwa, R., Riedel, S. (eds.) Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, EMNLP 2017, Copenhagen, Denmark, 9–11 Sept 2017, pp. 188–197. Association for Computational Linguistics (2017). https://doi.org/10.18653/v1/d17-1018

  26. Lee, K., He, L., Zettlemoyer, L.: Higher-order coreference resolution with coarse-to-fine inference. In: Walker, M.A., Ji, H., Stent, A. (eds.) Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT, New Orleans, Louisiana, USA, 1–6 June 2018, vol. 2 (Short Papers), pp. 687–692. Association for Computational Linguistics (2018). https://doi.org/10.18653/v1/n18-2108

  27. Luan, Y., He, L., Ostendorf, M., Hajishirzi, H.: Multi-task identification of entities, relations, and coreference for scientific knowledge graph construction. In: Riloff, E., Chiang, D., Hockenmaier, J., Tsujii, J. (eds.) Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, 31 Oct – 4 Nov 2018, pp. 3219–3232. Association for Computational Linguistics (2018). https://doi.org/10.18653/v1/d18-1360

  28. Lubani, M., Noah, S.A.M., Mahmud, R.: Ontology population: approaches and design aspects. J. Inf. Sci. 45(4), 502–515 (2019). https://doi.org/10.1177/0165551518801819

    Article  Google Scholar 

  29. Luo, X.: On coreference resolution performance metrics. In: HLT/EMNLP 2005, Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference, 6–8 Oct 2005, Vancouver, British Columbia, Canada, pp. 25–32. The Association for Computational Linguistics (2005). https://www.aclweb.org/anthology/H05-1004/

  30. Ma, J., et al.: Jointly optimized neural coreference resolution with mutual attention. In: Caverlee, J., Hu, X.B., Lalmas, M., Wang, W. (eds.) WSDM 2020: The Thirteenth ACM International Conference on Web Search and Data Mining, Houston, TX, USA, 3–7 Feb 2020, pp. 402–410. ACM (2020). https://doi.org/10.1145/3336191.

  31. Marasovic, A., Born, L., Opitz, J., Frank, A.: A mention-ranking model for abstract anaphora resolution. In: Palmer, M., Hwa, R., Riedel, S. (eds.) Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, EMNLP 2017, Copenhagen, Denmark, 9–11 Sept 2017, pp. 221–232. Association for Computational Linguistics (2017). https://doi.org/10.18653/v1/d17-1021

  32. Ng, V.: Machine learning for entity coreference resolution: a retrospective look at two decades of research. In: Singh, S.P., Markovitch, S. (eds.) Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, 4–9 Feb 2017, San Francisco, California, USA, pp. 4877–4884. AAAI Press (2017). http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14995

  33. Ng, V., Cardie, C.: Identifying anaphoric and non-anaphoric noun phrases to improve coreference resolution. In: 19th International Conference on Computational Linguistics, COLING 2002, Howard International House and Academia Sinica, Taipei, Taiwan, 24 Aug – 1 Sept 2002 (2002). https://www.aclweb.org/anthology/C02-1139/

  34. Nguyen, N.L.T., Kim, J., Miwa, M., Matsuzaki, T., Tsujii, J.: Improving protein coreference resolution by simple semantic classification. BMC Bioinform. 13, 304 (2012). https://doi.org/10.1186/1471-2105-13-304

    Article  Google Scholar 

  35. Peters, M.E., et al.: Deep contextualized word representations. In: Walker, M.A., Ji, H., Stent, A. (eds.) Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2018, New Orleans, Louisiana, USA, 1–6 June 2018, vol. 1 (Long Papers), pp. 2227–2237. Association for Computational Linguistics (2018). https://doi.org/10.18653/v1/n18-1202

  36. Pradhan, S., Luo, X., Recasens, M., Hovy, E.H., Ng, V., Strube, M.: Scoring coreference partitions of predicted mentions: a reference implementation. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, ACL 2014, 22–27 June 2014, Baltimore, MD, USA, vol. 2: Short Papers, pp. 30–35. The Association for Computer Linguistics (2014). https://doi.org/10.3115/v1/p14-2006

  37. Pradhan, S., et al.: Towards robust linguistic analysis using ontonotes. In: Hockenmaier, J., Riedel, S. (eds.) Proceedings of the Seventeenth Conference on Computational Natural Language Learning, CoNLL 2013, Sofia, Bulgaria, 8–9 Aug 2013, pp. 143–152. ACL (2013). https://www.aclweb.org/anthology/W13-3516/

  38. Pradhan, S., Moschitti, A., Xue, N., Uryupina, O., Zhang, Y.: Conll-2012 shared task: modeling multilingual unrestricted coreference in OntoNotes. In: Pradhan, S., Moschitti, A., Xue, N. (eds.) Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning - Proceedings of the Shared Task: Modeling Multilingual Unrestricted Coreference in OntoNotes, EMNLP-CoNLL 2012, 13 July 2012, Jeju Island, Korea, pp. 1–40. ACL (2012). https://www.aclweb.org/anthology/W12-4501/

  39. Pujara, J., Singh, S.: Mining knowledge graphs from text. In: Chang, Y., Zhai, C., Liu, Y., Maarek, Y. (eds.) Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, WSDM 2018, Marina Del Rey, CA, USA, 5–9 Feb 2018, pp. 789–790. ACM (2018). https://doi.org/10.1145/3159652.3162011

  40. Q. Zadeh, B., Handschuh, S.: The ACL RD-TEC: a dataset for benchmarking terminology extraction and classification in computational linguistics. In: Proceedings of the 4th International Workshop on Computational Terminology (Computerm), pp. 52–63. Association for Computational Linguistics and Dublin City University, Dublin, Ireland (Aug 2014). https://doi.org/10.3115/v1/W14-4807

  41. ur Rahman, M.A., Ng, V.: Supervised models for coreference resolution. In: Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, EMNLP 2009, 6–7 Aug 2009, Singapore, A meeting of SIGDAT, a Special Interest Group of the ACL, pp. 968–977. ACL (2009). https://www.aclweb.org/anthology/D09-1101/

  42. Ruder, S.: Neural Transfer Learning for Natural Language Processing. Ph.D. thesis, National University of Ireland, Galway (2019)

    Google Scholar 

  43. Sanh, V., Wolf, T., Ruder, S.: A hierarchical multi-task approach for learning embeddings from semantic tasks. In: The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, 27 Jan – 1 Feb 2019, pp. 6949–6956. AAAI Press (2019). https://doi.org/10.1609/aaai.v33i01.33016949

  44. Schäfer, U., Spurk, C., Steffen, J.: A fully coreference-annotated corpus of scholarly papers from the ACL anthology. In: Kay, M., Boitet, C. (eds.) COLING 2012, 24th International Conference on Computational Linguistics, Proceedings of the Conference: Posters, 8–15 Dec 2012, Mumbai, India, pp. 1059–1070. Indian Institute of Technology Bombay (2012). https://www.aclweb.org/anthology/C12-2103/

  45. Soon, W.M., Ng, H.T., Lim, C.Y.: A machine learning approach to coreference resolution of noun phrases. Comput. Linguist. 27(4), 521–544 (2001). https://doi.org/10.1162/089120101753342653

    Article  Google Scholar 

  46. Stenetorp, P., et al.: BRAT: a web-based tool for NLP-assisted text annotation. In: Daelemans, W., Lapata, M., Màrquez, L. (eds.) EACL 2012, 13th Conference of the European Chapter of the Association for Computational Linguistics, Avignon, France, 23–27 Apr 2012, pp. 102–107. The Association for Computer Linguistics (2012). https://www.aclweb.org/anthology/E12-2021/

  47. Teufel, S., Siddharthan, A., Batchelor, C.R.: Towards domain-independent argumentative zoning: evidence from chemistry and computational linguistics. In: Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, EMNLP 2009, 6–7 Aug 2009, Singapore, A meeting of SIGDAT, a Special Interest Group of the ACL, pp. 1493–1502. ACL (2009). https://www.aclweb.org/anthology/D09-1155/

  48. Vilain, M.B., Burger, J.D., Aberdeen, J.S., Connolly, D., Hirschman, L.: A model-theoretic coreference scoring scheme. In: Proceedings of the 6th Conference on Message Understanding, MUC 1995, Columbia, Maryland, USA, 6–8 Nov 1995, pp. 45–52. ACL (1995). https://doi.org/10.3115/1072399.1072405

  49. Wadden, D., Wennberg, U., Luan, Y., Hajishirzi, H.: Entity, relation, and event extraction with contextualized span representations. In: Inui, K., Jiang, J., Ng, V., Wan, X. (eds.) Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, 3–7 Nov 2019, pp. 5783–5788. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/D19-1585

  50. Weikum, G., Dong, L., Razniewski, S., Suchanek, F.M.: Machine knowledge: Creation and curation of comprehensive knowledge bases. CoRR abs/2009.11564 (2020). https://arxiv.org/abs/2009.11564

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Arthur Brack , Anett Hoppe or Ralph Ewerth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brack, A., Müller, D.U., Hoppe, A., Ewerth, R. (2021). Coreference Resolution in Research Papers from Multiple Domains. In: Hiemstra, D., Moens, MF., Mothe, J., Perego, R., Potthast, M., Sebastiani, F. (eds) Advances in Information Retrieval. ECIR 2021. Lecture Notes in Computer Science(), vol 12656. Springer, Cham. https://doi.org/10.1007/978-3-030-72113-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72113-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72112-1

  • Online ISBN: 978-3-030-72113-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics