Abstract
Coreference resolution is essential for automatic text understanding to facilitate high-level information retrieval tasks such as text summarisation or question answering. Previous work indicates that the performance of state-of-the-art approaches (e.g. based on BERT) noticeably declines when applied to scientific papers. In this paper, we investigate the task of coreference resolution in research papers and subsequent knowledge graph population. We present the following contributions: (1) We annotate a corpus for coreference resolution that comprises 10 different scientific disciplines from Science, Technology, and Medicine (STM); (2) We propose transfer learning for automatic coreference resolution in research papers; (3) We analyse the impact of coreference resolution on knowledge graph (KG) population; (4) We release a research KG that is automatically populated from 55,485 papers in 10 STM domains. Comprehensive experiments show the usefulness of the proposed approach. Our transfer learning approach considerably outperforms state-of-the-art baselines on our corpus with an F1 score of 61.4 (+11.0), while the evaluation against a gold standard KG shows that coreference resolution improves the quality of the populated KG significantly with an F1 score of 63.5 (+21.8).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Seventh Message Understanding Conference: Proceedings of a Conference Held in Fairfax, Virginia, USA, MUC 1998, 29 April–1 May 1998. ACL (1998). https://www.aclweb.org/anthology/volumes/M98-1/
Augenstein, I., Das, M., Riedel, S., Vikraman, L., McCallum, A.: Semeval 2017 task 10: Scienceie - extracting keyphrases and relations from scientific publications. In: Bethard, S., Carpuat, M., Apidianaki, M., Mohammad, S.M., Cer, D.M., Jurgens, D. (eds.) Proceedings of the 11th International Workshop on Semantic Evaluation, SemEval@ACL 2017, Vancouver, Canada, 3–4 Aug 2017, pp. 546–555. Association for Computational Linguistics (2017). https://doi.org/10.18653/v1/S17-2091
Bagga, A., Baldwin, B.: Algorithms for scoring coreference chains. In: The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference, pp. 563–566 (1998)
Beltagy, I., Lo, K., Cohan, A.: SciBERT: a pretrained language model for scientific text. In: Inui, K., Jiang, J., Ng, V., Wan, X. (eds.) Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, 3–7 Nov 2019, pp. 3613–3618. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/D19-1371
Bornmann, L., Mutz, R.: Growth rates of modern science: a bibliometric analysis based on the number of publications and cited references. J. Assoc. Inf. Sci. Technol. 66(11), 2215–2222 (2015). https://doi.org/10.1002/asi.23329
Brack, A., D’Souza, J., Hoppe, A., Auer, S., Ewerth, R.: Domain-independent extraction of scientific concepts from research articles. In: Jose, J.M., et al. (eds.) ECIR 2020, Part I. LNCS, vol. 12035, pp. 251–266. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45439-5_17
Chaimongkol, P., Aizawa, A., Tateisi, Y.: Corpus for coreference resolution on scientific papers. In: Calzolari, N., et al. (eds.) Proceedings of the Ninth International Conference on Language Resources and Evaluation, LREC 2014, Reykjavik, Iceland, 26–31 May 2014, pp. 3187–3190. European Language Resources Association (ELRA) (2014). http://www.lrec-conf.org/proceedings/lrec2014/summaries/286.html
Chambers, A.: Statistical Models for Text Classification and Clustering: Applications and Analysis. Ph.D. thesis, University of California, Irvine (2013)
Clark, K., Manning, C.D.: Entity-centric coreference resolution with model stacking. In: ACL (1), pp. 1405–1415. The Association for Computer Linguistics (2015)
Cohen, J.: A coefficient of agreement for nominal scales. Educ. Psychol. Measur. 20(1), 37–46 (1960)
Cohen, K.B., et al.: Coreference annotation and resolution in the colorado richly annotated full text (CRAFT) corpus of biomedical journal articles. BMC Bioinform. 18(1), 372:1–372:14 (2017). https://doi.org/10.1186/s12859-017-1775-9
Denis, P., Baldridge, J.: Specialized models and ranking for coreference resolution. In: 2008 Conference on Empirical Methods in Natural Language Processing, EMNLP 2008, Proceedings of the Conference, 25–27 Oct 2008, Honolulu, Hawaii, USA. A meeting of SIGDAT, a Special Interest Group of the ACL, pp. 660–669. ACL (2008). https://www.aclweb.org/anthology/D08-1069/
Dessì, D., Osborne, F., Reforgiato Recupero, D., Buscaldi, D., Motta, E., Sack, H.: AI-KG: an automatically generated knowledge graph of artificial intelligence. In: Pan, J.Z., et al. (eds.) ISWC 2020, Part II. LNCS, vol. 12507, pp. 127–143. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62466-8_9
Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Burstein, J., Doran, C., Solorio, T. (eds.) Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, 2–7 June 2019, vol. 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/n19-1423
Doddington, G.R., Mitchell, A., Przybocki, M.A., Ramshaw, L.A., Strassel, S.M., Weischedel, R.M.: The automatic content extraction (ACE) program - tasks, data, and evaluation. In: Proceedings of the Fourth International Conference on Language Resources and Evaluation, LREC 2004, 26–28 May 2004, Lisbon, Portugal. European Language Resources Association (2004). http://www.lrec-conf.org/proceedings/lrec2004/summaries/5.htm
D’Souza, J., Hoppe, A., Brack, A., Jaradeh, M.Y., Auer, S., Ewerth, R.: The STEM-ECR dataset: grounding scientific entity references in STEM scholarly content to authoritative encyclopedic and lexicographic sources. In: Calzolari, N., et al. (eds.) Proceedings of The 12th Language Resources and Evaluation Conference, LREC 2020, Marseille, France, 11–16 May 2020, pp. 2192–2203. European Language Resources Association (2020), https://www.aclweb.org/anthology/2020.lrec-1.268/
Elsevier Labs: Elsevier OA STM corpus. https://github.com/elsevierlabs/OA-STM-Corpus (2017). Accessed 15 July 2020
Fellbaum, C. (ed.): WordNet: An Electronic Lexical Database. Language, Speech, and Communication. MIT Press, Cambridge (1998)
Fisas, B., Saggion, H., Ronzano, F.: On the discoursive structure of computer graphics research papers. In: Meyers, A., Rehbein, I., Zinsmeister, H. (eds.) Proceedings of The 9th Linguistic Annotation Workshop, LAW@NAACL-HLT 2015, 5 June 2015, Denver, Colorado, USA, pp. 42–51. The Association for Computer Linguistics (2015). https://doi.org/10.3115/v1/w15-1605
Gábor, K., Buscaldi, D., Schumann, A., QasemiZadeh, B., Zargayouna, H., Charnois, T.: Semeval-2018 task 7: semantic relation extraction and classification in scientific papers. In: Apidianaki, M., Mohammad, S.M., May, J., Shutova, E., Bethard, S., Carpuat, M. (eds.) Proceedings of The 12th International Workshop on Semantic Evaluation, SemEval@NAACL-HLT 2018, New Orleans, Louisiana, USA, 5–6 June 2018, pp. 679–688. Association for Computational Linguistics (2018). https://doi.org/10.18653/v1/s18-1111
Joshi, M., Chen, D., Liu, Y., Weld, D.S., Zettlemoyer, L., Levy, O.: SpanBERT: improving pre-training by representing and predicting spans. Trans. Assoc. Comput. Linguistics 8, 64–77 (2020). https://transacl.org/ojs/index.php/tacl/article/view/1853
Joshi, M., Levy, O., Zettlemoyer, L., Weld, D.S.: BERT for coreference resolution: Baselines and analysis. In: Inui, K., Jiang, J., Ng, V., Wan, X. (eds.) Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, 3–7 Nov 2019, pp. 5802–5807. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/D19-1588
Kim, J., Nguyen, N.L.T., Wang, Y., Tsujii, J., Takagi, T., Yonezawa, A.: The genia event and protein coreference tasks of the BioNLP shared task 2011. BMC Bioinform. 13(S–11), S1 (2012). https://doi.org/10.1186/1471-2105-13-S11-S1
Kopeć, M., Ogrodniczuk, M.: Inter-annotator agreement in coreference annotation of polish. In: Sobecki, J., Boonjing, V., Chittayasothorn, S. (eds.) Advanced Approaches to Intelligent Information and Database Systems. SCI, vol. 551, pp. 149–158. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05503-9_15
Lee, K., He, L., Lewis, M., Zettlemoyer, L.: End-to-end neural coreference resolution. In: Palmer, M., Hwa, R., Riedel, S. (eds.) Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, EMNLP 2017, Copenhagen, Denmark, 9–11 Sept 2017, pp. 188–197. Association for Computational Linguistics (2017). https://doi.org/10.18653/v1/d17-1018
Lee, K., He, L., Zettlemoyer, L.: Higher-order coreference resolution with coarse-to-fine inference. In: Walker, M.A., Ji, H., Stent, A. (eds.) Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT, New Orleans, Louisiana, USA, 1–6 June 2018, vol. 2 (Short Papers), pp. 687–692. Association for Computational Linguistics (2018). https://doi.org/10.18653/v1/n18-2108
Luan, Y., He, L., Ostendorf, M., Hajishirzi, H.: Multi-task identification of entities, relations, and coreference for scientific knowledge graph construction. In: Riloff, E., Chiang, D., Hockenmaier, J., Tsujii, J. (eds.) Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, 31 Oct – 4 Nov 2018, pp. 3219–3232. Association for Computational Linguistics (2018). https://doi.org/10.18653/v1/d18-1360
Lubani, M., Noah, S.A.M., Mahmud, R.: Ontology population: approaches and design aspects. J. Inf. Sci. 45(4), 502–515 (2019). https://doi.org/10.1177/0165551518801819
Luo, X.: On coreference resolution performance metrics. In: HLT/EMNLP 2005, Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference, 6–8 Oct 2005, Vancouver, British Columbia, Canada, pp. 25–32. The Association for Computational Linguistics (2005). https://www.aclweb.org/anthology/H05-1004/
Ma, J., et al.: Jointly optimized neural coreference resolution with mutual attention. In: Caverlee, J., Hu, X.B., Lalmas, M., Wang, W. (eds.) WSDM 2020: The Thirteenth ACM International Conference on Web Search and Data Mining, Houston, TX, USA, 3–7 Feb 2020, pp. 402–410. ACM (2020). https://doi.org/10.1145/3336191.
Marasovic, A., Born, L., Opitz, J., Frank, A.: A mention-ranking model for abstract anaphora resolution. In: Palmer, M., Hwa, R., Riedel, S. (eds.) Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, EMNLP 2017, Copenhagen, Denmark, 9–11 Sept 2017, pp. 221–232. Association for Computational Linguistics (2017). https://doi.org/10.18653/v1/d17-1021
Ng, V.: Machine learning for entity coreference resolution: a retrospective look at two decades of research. In: Singh, S.P., Markovitch, S. (eds.) Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, 4–9 Feb 2017, San Francisco, California, USA, pp. 4877–4884. AAAI Press (2017). http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14995
Ng, V., Cardie, C.: Identifying anaphoric and non-anaphoric noun phrases to improve coreference resolution. In: 19th International Conference on Computational Linguistics, COLING 2002, Howard International House and Academia Sinica, Taipei, Taiwan, 24 Aug – 1 Sept 2002 (2002). https://www.aclweb.org/anthology/C02-1139/
Nguyen, N.L.T., Kim, J., Miwa, M., Matsuzaki, T., Tsujii, J.: Improving protein coreference resolution by simple semantic classification. BMC Bioinform. 13, 304 (2012). https://doi.org/10.1186/1471-2105-13-304
Peters, M.E., et al.: Deep contextualized word representations. In: Walker, M.A., Ji, H., Stent, A. (eds.) Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2018, New Orleans, Louisiana, USA, 1–6 June 2018, vol. 1 (Long Papers), pp. 2227–2237. Association for Computational Linguistics (2018). https://doi.org/10.18653/v1/n18-1202
Pradhan, S., Luo, X., Recasens, M., Hovy, E.H., Ng, V., Strube, M.: Scoring coreference partitions of predicted mentions: a reference implementation. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, ACL 2014, 22–27 June 2014, Baltimore, MD, USA, vol. 2: Short Papers, pp. 30–35. The Association for Computer Linguistics (2014). https://doi.org/10.3115/v1/p14-2006
Pradhan, S., et al.: Towards robust linguistic analysis using ontonotes. In: Hockenmaier, J., Riedel, S. (eds.) Proceedings of the Seventeenth Conference on Computational Natural Language Learning, CoNLL 2013, Sofia, Bulgaria, 8–9 Aug 2013, pp. 143–152. ACL (2013). https://www.aclweb.org/anthology/W13-3516/
Pradhan, S., Moschitti, A., Xue, N., Uryupina, O., Zhang, Y.: Conll-2012 shared task: modeling multilingual unrestricted coreference in OntoNotes. In: Pradhan, S., Moschitti, A., Xue, N. (eds.) Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning - Proceedings of the Shared Task: Modeling Multilingual Unrestricted Coreference in OntoNotes, EMNLP-CoNLL 2012, 13 July 2012, Jeju Island, Korea, pp. 1–40. ACL (2012). https://www.aclweb.org/anthology/W12-4501/
Pujara, J., Singh, S.: Mining knowledge graphs from text. In: Chang, Y., Zhai, C., Liu, Y., Maarek, Y. (eds.) Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, WSDM 2018, Marina Del Rey, CA, USA, 5–9 Feb 2018, pp. 789–790. ACM (2018). https://doi.org/10.1145/3159652.3162011
Q. Zadeh, B., Handschuh, S.: The ACL RD-TEC: a dataset for benchmarking terminology extraction and classification in computational linguistics. In: Proceedings of the 4th International Workshop on Computational Terminology (Computerm), pp. 52–63. Association for Computational Linguistics and Dublin City University, Dublin, Ireland (Aug 2014). https://doi.org/10.3115/v1/W14-4807
ur Rahman, M.A., Ng, V.: Supervised models for coreference resolution. In: Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, EMNLP 2009, 6–7 Aug 2009, Singapore, A meeting of SIGDAT, a Special Interest Group of the ACL, pp. 968–977. ACL (2009). https://www.aclweb.org/anthology/D09-1101/
Ruder, S.: Neural Transfer Learning for Natural Language Processing. Ph.D. thesis, National University of Ireland, Galway (2019)
Sanh, V., Wolf, T., Ruder, S.: A hierarchical multi-task approach for learning embeddings from semantic tasks. In: The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, 27 Jan – 1 Feb 2019, pp. 6949–6956. AAAI Press (2019). https://doi.org/10.1609/aaai.v33i01.33016949
Schäfer, U., Spurk, C., Steffen, J.: A fully coreference-annotated corpus of scholarly papers from the ACL anthology. In: Kay, M., Boitet, C. (eds.) COLING 2012, 24th International Conference on Computational Linguistics, Proceedings of the Conference: Posters, 8–15 Dec 2012, Mumbai, India, pp. 1059–1070. Indian Institute of Technology Bombay (2012). https://www.aclweb.org/anthology/C12-2103/
Soon, W.M., Ng, H.T., Lim, C.Y.: A machine learning approach to coreference resolution of noun phrases. Comput. Linguist. 27(4), 521–544 (2001). https://doi.org/10.1162/089120101753342653
Stenetorp, P., et al.: BRAT: a web-based tool for NLP-assisted text annotation. In: Daelemans, W., Lapata, M., Màrquez, L. (eds.) EACL 2012, 13th Conference of the European Chapter of the Association for Computational Linguistics, Avignon, France, 23–27 Apr 2012, pp. 102–107. The Association for Computer Linguistics (2012). https://www.aclweb.org/anthology/E12-2021/
Teufel, S., Siddharthan, A., Batchelor, C.R.: Towards domain-independent argumentative zoning: evidence from chemistry and computational linguistics. In: Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, EMNLP 2009, 6–7 Aug 2009, Singapore, A meeting of SIGDAT, a Special Interest Group of the ACL, pp. 1493–1502. ACL (2009). https://www.aclweb.org/anthology/D09-1155/
Vilain, M.B., Burger, J.D., Aberdeen, J.S., Connolly, D., Hirschman, L.: A model-theoretic coreference scoring scheme. In: Proceedings of the 6th Conference on Message Understanding, MUC 1995, Columbia, Maryland, USA, 6–8 Nov 1995, pp. 45–52. ACL (1995). https://doi.org/10.3115/1072399.1072405
Wadden, D., Wennberg, U., Luan, Y., Hajishirzi, H.: Entity, relation, and event extraction with contextualized span representations. In: Inui, K., Jiang, J., Ng, V., Wan, X. (eds.) Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, 3–7 Nov 2019, pp. 5783–5788. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/D19-1585
Weikum, G., Dong, L., Razniewski, S., Suchanek, F.M.: Machine knowledge: Creation and curation of comprehensive knowledge bases. CoRR abs/2009.11564 (2020). https://arxiv.org/abs/2009.11564
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Brack, A., Müller, D.U., Hoppe, A., Ewerth, R. (2021). Coreference Resolution in Research Papers from Multiple Domains. In: Hiemstra, D., Moens, MF., Mothe, J., Perego, R., Potthast, M., Sebastiani, F. (eds) Advances in Information Retrieval. ECIR 2021. Lecture Notes in Computer Science(), vol 12656. Springer, Cham. https://doi.org/10.1007/978-3-030-72113-8_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-72113-8_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-72112-1
Online ISBN: 978-3-030-72113-8
eBook Packages: Computer ScienceComputer Science (R0)