PET-Guided Attention Network for Segmentation of Lung Tumors from PET/CT Images | SpringerLink
Skip to main content

PET-Guided Attention Network for Segmentation of Lung Tumors from PET/CT Images

  • Conference paper
  • First Online:
Pattern Recognition (DAGM GCPR 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12544))

Included in the following conference series:

Abstract

PET/CT imaging is the gold standard for the diagnosis and staging of lung cancer. However, especially in healthcare systems with limited resources, costly PET/CT images are often not readily available. Conventional machine learning models either process CT or PET/CT images but not both. Models designed for PET/CT images are hence restricted by the number of PET images, such that they are unable to additionally leverage CT-only data. In this work, we apply the concept of visual soft attention to efficiently learn a model for lung cancer segmentation from only a small fraction of PET/CT scans and a larger pool of CT-only scans. We show that our model is capable of jointly processing PET/CT as well as CT-only images, which performs on par with the respective baselines whether or not PET images are available at test time. We then demonstrate that the model learns efficiently from only a few PET/CT scans in a setting where mostly CT-only data is available, unlike conventional models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/pvk95/PAG.

References

  1. Cai, L., Wang, Z., Gao, H., Shen, D., Ji, S.: Deep adversarial learning for multi-modality missing data completion. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1158–1166 (2018)

    Google Scholar 

  2. Chandar, S., Khapra, M.M., Larochelle, H., Ravindran, B.: Correlational neural networks. Neural Comput. 28(2), 257–285 (2016)

    Article  MathSciNet  Google Scholar 

  3. Chartsias, A., Joyce, T., Giuffrida, M.V., Tsaftaris, S.A.: Multimodal MR synthesis via modality-invariant latent representation. IEEE Trans. Med. Imaging 37(3), 803–814 (2017)

    Article  Google Scholar 

  4. Dorent, R., Joutard, S., Modat, M., Ourselin, S., Vercauteren, T.: Hetero-modal variational encoder-decoder for joint modality completion and segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 74–82. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_9

    Chapter  Google Scholar 

  5. Guo, Z., Li, X., Huang, H., Guo, N., Li, Q.: Medical image segmentation based on multi-modal convolutional neural network: study on image fusion schemes. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 903–907. IEEE (2018)

    Google Scholar 

  6. Havaei, M., Guizard, N., Chapados, N., Bengio, Y.: HeMIS: hetero-modal image segmentation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 469–477. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_54

    Chapter  Google Scholar 

  7. Jetley, S., Lord, N.A., Lee, N., Torr, P.H.: Learn to pay attention. arXiv-1804 (2018)

    Google Scholar 

  8. Li, L., Zhao, X., Lu, W., Tan, S.: Deep learning for variational multimodality tumor segmentation in PET/CT. Neurocomputing (2019)

    Google Scholar 

  9. Lian, C., Ruan, S., Denoeux, T., Li, H., Vera, P.: Joint tumor segmentation in PET-CT images using co-clustering and fusion based on belief functions. IEEE Trans. Image Process. 28(2), 755–766 (2018)

    Article  MathSciNet  Google Scholar 

  10. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)

    Article  Google Scholar 

  11. Myronenko, A.: 3D MRI brain tumor segmentation using autoencoder regularization. In: Crimi, A., et al. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 311–320. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_28

    Chapter  Google Scholar 

  12. Oktay, O., et al.: Attention U-Net: learning where to look for the pancreas (2018)

    Google Scholar 

  13. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  14. American Cancer Society: About lung cancer, March 2020. https://www.cancer.org/cancer/lung-cancer/about.html

  15. Styner, M., et al.: 3D segmentation in the clinic: a grand challenge II: MS lesion segmentation. Midas J. 2008, 1–6 (2008)

    Google Scholar 

  16. Wu, Y., He, K.: Group normalization. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_1

    Chapter  Google Scholar 

  17. Zhao, L., Lu, Z., Jiang, J., Zhou, Y., Wu, Y., Feng, Q.: Automatic nasopharyngeal carcinoma segmentation using fully convolutional networks with auxiliary paths on dual-modality PET-CT images. J. Digit. Imaging 32(3), 462–470 (2019)

    Article  Google Scholar 

  18. Zhong, Z., et al.: 3D fully convolutional networks for co-segmentation of tumors on PET-CT images. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 228–231. IEEE (2018)

    Google Scholar 

  19. Zhou, T., Canu, S., Vera, P., Ruan, S.: Brain tumor segmentation with missing modalities via latent multi-source correlation representation. arXiv-2003 (2020)

    Google Scholar 

Download references

Acknowledgements

ID is supported by the SNSF grant #200021_188466.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varaha Karthik Pattisapu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1376 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pattisapu, V.K., Daunhawer, I., Weikert, T., Sauter, A., Stieltjes, B., Vogt, J.E. (2021). PET-Guided Attention Network for Segmentation of Lung Tumors from PET/CT Images. In: Akata, Z., Geiger, A., Sattler, T. (eds) Pattern Recognition. DAGM GCPR 2020. Lecture Notes in Computer Science(), vol 12544. Springer, Cham. https://doi.org/10.1007/978-3-030-71278-5_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71278-5_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71277-8

  • Online ISBN: 978-3-030-71278-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics