Inline Double Layer Depth Estimation with Transparent Materials | SpringerLink
Skip to main content

Inline Double Layer Depth Estimation with Transparent Materials

  • Conference paper
  • First Online:
Pattern Recognition (DAGM GCPR 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12544))

Included in the following conference series:

Abstract

3D depth computation from stereo data has been one of the most researched topics in computer vision. While state-of-art approaches have flourished over time, reconstruction of transparent materials is still considered an open problem. Based on 3D light field data we propose a method to obtain smooth and consistent double-layer estimates of scenes with transparent materials. Our novel approach robustly combines estimates from models with different layer hypotheses in a cost volume with subsequent minimization of a joint second order \(\mathrm {TGV}\) energy on two depth layers. Additionally we showcase the results of our approach on objects from common inspection use-cases in an industrial setting and compare our work to related methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aach, T., Mota, C., Stuke, I., Muhlich, M., Barth, E.: Analysis of superimposed oriented patterns. IEEE Trans. Image Process. 15(12), 3690–3700 (2006)

    Article  MathSciNet  Google Scholar 

  2. Adelson, E.H., Bergen, J.R.: The plenoptic function and the elements of early vision. In: Landy, M.S., Movshon, J.A. (eds.) Computational Models of Visual Processing, pp. 3–20. The MIT Press, Cambridge (1991)

    Google Scholar 

  3. Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imaging Sci. 3(3), 492–526 (2010). https://doi.org/10.1137/090769521

    Article  MathSciNet  MATH  Google Scholar 

  4. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011). https://doi.org/10.1007/s10851-010-0251-1

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, G., Han, K., Wong, K.Y.K.: TOM-Net: learning transparent object matting from a single image. In: CVPR (2018)

    Google Scholar 

  6. Gortler, S.J., Grzeszczuk, R., Szeliski, R., Cohen, M.F.: The lumigraph. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1996, pp. 43–54. Association for Computing Machinery, New York (1996). https://doi.org/10.1145/237170.237200

  7. Ji, Y., Xia, Q., Zhang, Z.: Fusing depth and Silhouette for scanning transparent object with RGB-D sensor. Int. J. Opt. 2017, 1–11 (2017). https://doi.org/10.1155/2017/9796127

    Article  Google Scholar 

  8. Johannsen, O., Sulc, A., Goldlücke, B.: Occlusion-aware depth estimation using sparse light field coding. In: German Conference on Pattern Recognition (Proceedings of the GCPR) (2016)

    Google Scholar 

  9. Johannsen, O., Sulc, A., Goldlücke, B.: What sparse light field coding reveals about scene structure. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  10. Kim, J., Reshetouski, I., Ghosh, A.: Acquiring axially-symmetric transparent objects using single-view transmission imaging. In: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1484–1492 (2017)

    Google Scholar 

  11. Koppal, S.J.: Lambertian reflectance. In: Ikeuchi, K. (ed.) Computer Vision: A Reference Guide, pp. 441–443. Springer, Boston (2014). https://doi.org/10.1007/978-0-387-31439-6_534

  12. Kuschk, G., Cremers, D.: Fast and accurate large-scale stereo reconstruction using variational methods. In: Proceedings of the 2013 IEEE International Conference on Computer Vision Workshops, pp. 700–707 (2013)

    Google Scholar 

  13. Li, Y., Osher, S.: A new median formula with applications to PDE based denoising. Commun. Math. Sci. 7(3), 741–753 (2009). https://projecteuclid.org:443/euclid.cms/1256562821

  14. Li, Z., Yeh, Y.Y., Chandraker, M.: Through the looking glass: neural 3D reconstruction of transparent shapes. In: The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  15. Miyazaki, D., Ikeuchi, K.: Inverse polarization raytracing: estimating surface shapes of transparent objects. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 2, pp. 910–917 (2005)

    Google Scholar 

  16. Qian, Y., Gong, M., Yang, Y.: 3d reconstruction of transparent objects with position-normal consistency. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2016), pp. 4369–4377 (2016)

    Google Scholar 

  17. Ranftl, R., Gehrig, S., Pock, T., Bischof, H.: Pushing the limits of stereo using variational stereo estimation. In: 2012 IEEE Intelligent Vehicles Symposium, pp. 401–407 (2012)

    Google Scholar 

  18. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1), 259–268 (1992). https://doi.org/10.1016/0167-2789(92)90242-F. http://www.sciencedirect.com/science/article/pii/016727899290242F

  19. Tanaka, K., Mukaigawa, Y., Kubo, H., Matsushita, Y., Yagi, Y.: Recovering transparent shape from time-of-flight distortion. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2016), pp. 4387–4395 (2016)

    Google Scholar 

  20. Trifonov, B., Bradley, D., Heidrich, W.: Tomographic reconstruction of transparent objects. In: ACM SIGGRAPH 2006 Sketches, SIGGRAPH 2006, p. 55-es. Association for Computing Machinery, New York (2006). https://doi.org/10.1145/1179849.1179918

  21. Štolc, S., Huber-Mörk, R., Holländer, B., Soukup, D.: Depth and all-in-focus images obtained by multi-line-scan light-field approach. In: Electronic Imaging (2014)

    Google Scholar 

  22. Wanner, S., Goldlücke, B.: Globally consistent depth labeling of 4D lightfields. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2012)

    Google Scholar 

  23. Wanner, S., Goldlücke, B.: Reconstructing reflective and transparent surfaces from epipolar plane images. In: German Conference on Pattern Recognition (Proceedings of the GCPR, Oral Presentation) (2013)

    Google Scholar 

  24. Wanner, S., Meister, S., Goldlücke, B.: Datasets and benchmarks for densely sampled 4D light fields. In: Vision, Modelling and Visualization (VMV) (2013)

    Google Scholar 

  25. Wu, B., Zhou, Y., Qian, Y., Cong, M., Huang, H.: Full 3D reconstruction of transparent objects. ACM Trans. Graph. 37, 1–11 (2018). https://doi.org/10.1145/3197517.3201286

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Kopf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kopf, C., Pock, T., Blaschitz, B., Štolc, S. (2021). Inline Double Layer Depth Estimation with Transparent Materials. In: Akata, Z., Geiger, A., Sattler, T. (eds) Pattern Recognition. DAGM GCPR 2020. Lecture Notes in Computer Science(), vol 12544. Springer, Cham. https://doi.org/10.1007/978-3-030-71278-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71278-5_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71277-8

  • Online ISBN: 978-3-030-71278-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics