Abstract
A team of Micro Aerial Vehicles (MAVs), or a Swarm, is theoretically able to accomplish more complex tasks than a single robot by covering more area, gathering more data, and ensuring resilience to single-robot failure.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chung, S., Paranjape, A.A., Dames, P., Shen, S., Kumar, V.: A survey on aerial swarm robotics. IEEE Trans. Rob. 34(4), 837–855 (2018)
Vásárhelyi, G., Virágh, C., Somorjai, G., Nepusz, T., Eiben, A.E., Vicsek, T.: Optimized flocking of autonomous drones in confined environments. Sci. Rob. 3(20) (2018)
Balázs, B., Vásárhelyi, G., Vicsek, T.: Adaptive leadership overcomes persistence-responsivity trade-off in flocking. J. Roy. Soc. Interface 17(167), 20190853 (2020)
Intel. Intel Drone Light Show. https://tinyurl.com/y8zsn7te
VergeAero. Verge Aero X1 Light Show. https://verge.aero/
Kushleyev, A., Mellinger, D., Powers, C., Kumar, V.: Towards a swarm of agile micro quadrotors. Auton. Rob. 35(4), 287–300 (2013)
Preiss, J.A., Honig, W., Sukhatme, G.S., Ayanian, N.: Crazyswarm: A large nano-quadcopter swarm. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 3299–3304. IEEE (2017)
Turpin, M., Michael, N., Kumar, V.: Capt: concurrent assignment and planning of trajectories for multiple robots. IJRR 33(1), 98–112 (2014)
Alarifi, A., Al-Salman, A., Alsaleh, M., Alnafessah, A., Al-Hadhrami, S., Al-Ammar, M.A., Al-Khalifa, H.S.: Ultra wideband indoor positioning technologies: analysis and recent advances. Sensors 16(5), 707 (2016)
Ledergerber, A., Hamer, M., D’Andrea, R.: A robot self-localization system using one-way ultra-wideband communication. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3131–3137. IEEE (2015)
Mueller, M.W., Hamer, M., D’Andrea, R.: Fusing ultra-wideband range measurements with accelerometers and rate gyroscopes for quadrocopter state estimation. In. IEEE ICRA, vol. 2015, pp. 1730–1736 (2015)
Shule, W., Almansa, C.M., Queralta, J.P., Zou, Z., Westerlund, T.: Uwb-based localization for multi-uav systems and collaborative heterogeneous multi-robot systems: a survey (2020)
Afanasov, M., Mottola, L., Whitehouse, K.: Poster: testbed for aerial drone applications. In: 2017 EWSN, pp. 192–193. Junction Publishing, USA (2017)
Sanchez-Lopez, J.L., Pestana, J., de la Puente, P., Carrio, A., Campoy, P.: Visual quadrotor swarm for the imav 2013 indoor competition. In: Armada, M.A., Sanfeliu, A., Ferre, M. (eds.) ROBOT2013: First Iberian Robotics Conference, pp. 55–63. Springer, Cham (2014)
Sanchez-Lopez, J.L., Pestana, J., de la Puente, P., Campoy, P.: A reliable open-source system architecture for the fast designing and prototyping of autonomous multi-UAV systems: Simulation and experimentation. JIRS 84(1), 779–797 (2016)
Faigl, J., Krajník, T., Chudoba, J., Přeučil, L., Saska, M.: Low-cost embedded system for relative localization in robotic swarms. In: 2013 IEEE ICRA, pp. 993–998 (2013)
Lightbody, P., Krajník, T., Hanheide, M.: A versatile high-performance visual fiducial marker detection system with scalable identity encoding. In: Proceedings of the Symposium on Applied Computing, ser. SAC 2017, pp. 276–282 (2017)
Weinstein, A., Cho, A., Loianno, G., Kumar, V.: Visual inertial odometry swarm: an autonomous swarm of vision-based quadrotors. IEEE RAL 3(3), 1801–1807 (2018)
Li, S., Coppola, M., Wagter, C., de Croon, G.C.H.E.: An autonomous swarm of micro flying robots with range-based relative localization (2020)
Xu, H., Wang, L., Zhang, Y., Qiu, K., Shen, S.: Decentralized visual-inertial-uwb fusion for relative state estimation of aerial swarm (2020)
ModalAI. VOXL Flight board. https://www.modalai.com/
Dragon Drone Development Kit. DDK. https://worldsway.com/product/dragon-drone-development-kit/
Thakur, D., Loianno, G., Liu, W., Kumar, V.: Nuclear Environments Inspection with Micro Aerial Vehicles: Algorithms and Experiments. In: Xiao, J., Kröger, T., Khatib, O. (eds.) Proceedings of the 2018 ISER, pp. 191-200. Springer, Cham (2020)
Thakur, D., Loianno, G., Jarin-Lipschitz, L., Zhou, A., Kumar, V.: Autonomous inspection of a containment vessel using a micro aerial vehicle. In: IEEE SSRR, vol. 2019, pp. 1–7 (2019)
Wang, J., Olson, E.: Apriltag 2: efficient and robust fiducial detection. In. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 2016, pp. 4193–4198 (2016)
Santos, M., Mayya, S., Notomista, G., Egerstedt, M.: Decentralized minimum-energy coverage control for time-varying density functions. In: International Symposium on Multi-Robot and Multi-Agent Systems (MRS), vol. 2019, pp. 155–161. IEEE (2019)
Pimenta, L.C., Kumar, V., Mesquita, R.C., Pereira, G.A.: Sensing and coverage for a network of heterogeneous robots. In: 47th IEEE Conference on Decision and Control, vol. 2008, pp. 3947–3952. IEEE (2008)
Xu, X., Diaz-Mercado, Y.: Multi-robot control using coverage over time-varying non-convex domains. In: ICRA (2020)
Tolstaya, E., Gama, F., Paulos, J., Pappas, G., Kumar, V., Ribeiro, A.: Learning decentralized controllers for robot swarms with gnn. CoRR, vol. abs/1903.10527 (2019)
Gama, F., Marques, A.G., Leus, G., Ribeiro, A.: Convolutional neural network architectures for signals supported on graphs. IEEE Trans. Signal Process. 67(4), 1034–1049 (2018). https://doi.org/10.1109/TSP.2018.2887403
Acknowledgments
We gratefully acknowledge the support from ARL Grant DCIST CRA W911NF-17-2-0181, NSF Grant CNS-1521617, ARO Grant W911NF-13-1-0350, ONR Grant N00014-20-1-2822, ONR Grant N00014-20-S-B001 and Qualcomm Research.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Thakur, D., Tao, Y., Li, R., Zhou, A., Kushleyev, A., Kumar, V. (2021). Swarm of Inexpensive Heterogeneous Micro Aerial Vehicles. In: Siciliano, B., Laschi, C., Khatib, O. (eds) Experimental Robotics. ISER 2020. Springer Proceedings in Advanced Robotics, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-030-71151-1_37
Download citation
DOI: https://doi.org/10.1007/978-3-030-71151-1_37
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-71150-4
Online ISBN: 978-3-030-71151-1
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)