A Recurrent Neural Network Approach to Roll Estimation for Needle Steering | SpringerLink
Skip to main content

A Recurrent Neural Network Approach to Roll Estimation for Needle Steering

  • Conference paper
  • First Online:
Experimental Robotics (ISER 2020)

Abstract

Steerable needles are a promising technology for delivering targeted therapies in the body in a minimally invasive fashion via controlled, actively steered insertions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 32031
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 40039
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 40039
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Webster III, R.J., Kim, J.S., Cowan, N.J., Chirikjian, G.S., Okamura, A.M.: Nonholonomic modeling of needle steering. IJRR 25(5–6), 509–525 (2006)

    Google Scholar 

  2. Rucker, D.C., Das, J., Gilbert, H.B., Swaney, P.J., Miga, M.I., Sarkar, N., Webster III, R.J.: Sliding mode control of steerable needles. IEEE TRO 29(5), 1289–1299 (2013)

    Google Scholar 

  3. Minhas, D.S., Engh, J.A., Fenske, M.M., Riviere, C.N.: Modeling of needle steering via duty-cycled spinning. In: EMBS Proceedings, pp. 2756–2759 (2007)

    Google Scholar 

  4. Swensen, J.P., Lin, M., Okamura, A.M., Cowan, N.J.: Torsional dynamics of steerable needles: modeling and fluoroscopic guidance. IEEE TBME 61(11), 2707–2717 (2014)

    Google Scholar 

  5. Reed, K.B., Okamura, A.M., Cowan, N.J.: Modeling and control of needles with torsional friction. IEEE TBME 56(12), 2905–2916 (2009)

    Google Scholar 

  6. Kallem, V., Cowan, N.J.: Image guidance of flexible tip-steerable needles. IEEE TRO 25(1), 191–196 (2009)

    Google Scholar 

  7. Fallahi, B., Rossa, C., Sloboda, R., Usmani, N., Tavakoli, M.: Partial estimation of needle tip orientation in generalized coordinates in ultrasound image-guided needle insertion. In: IEEE AIM, pp. 1604–1609 (2016)

    Google Scholar 

  8. Wood, N.A., Shahrour, K., Ost, M.C., Riviere, C.N.: Needle steering system using duty-cycled rotation for percutaneous kidney access. In: EMBS Proceedings, pp. 5432–5435 (2010)

    Google Scholar 

  9. Kuutti, S., Bowden, R., Jin, Y., Barber, P., Fallah, S.: A survey of deep learning applications to autonomous vehicle control. arXiv, 1–23 (2019)

    Google Scholar 

  10. Avila-Carrasco, C., Ruppel, M., Persad, R., Bahl, A., Dogramadzi, S.: Analytical vs data-driven approach of modelling brachytherapy needle deflection. IEEE TMRB 2(4), 519–528 (2020)

    Google Scholar 

  11. Greff, K., Srivastava, R.K., Koutnik, J., Steunebrink, B.R., Schmidhuber, J.: LSTM: a search space odyssey. IEEE Trans. Neural Netw. Learn. Syst. 28(10), 2222–2232 (2017)

    Article  MathSciNet  Google Scholar 

  12. Amack, S.R., Margaret, M., Jason, E., Tayfun, E.E., Maxwell, K., Alan, M., Fabien, A., Jason and Gafford, J. Alterovitz, R.: Design and control of a compact modular robot for transbronchial lung biopsy. In: SPIE Medical Imaging: Image-Guided Procedures, Robotic Interventions, and Modeling (2019)

    Google Scholar 

  13. Rox, M., Emerson, M., Ertop, T.S., Fried, I., Fu, M., Hoelscher, J., Kuntz, A., Granna, J., Mitchell, J., Lester, M., Maldonado, F., Gillaspie, E.A., Akulian, J.A., Alterovitz, R., Webster, R.J.: Decoupling steerability from diameter: helical dovetail laser patterning for steerable needles. IEEE Access 8, 181411–181419 (2020)

    Article  Google Scholar 

  14. Swaney, P.J., Burgner, J., Gilbert, H.B., Webster III, R.J.: A flexure-based steerable needle: high curvature with reduced tissue damage. IEEE TBME 60(4), 906–909 (2013)

    Google Scholar 

  15. Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: 3rd International Conference on Learning Representations Proceedings, pp. 1–15 (2015)

    Google Scholar 

  16. Gal, Z., Ghahramani, Y.: A theoretically grounded application of dropout in recurrent neural networks. In: NIPS Proceedings (2016)

    Google Scholar 

  17. Choset, H.M., Hutchinson, S., Lynch, K.M., Kantor, G., Burgard, W., Kavraki, L.E., Thrun, S.: Principles of Robot Motion: Theory, Algorithms, and Implementation. MIT press, Cambridge (2005)

    MATH  Google Scholar 

  18. Fitzpatrick, J.M., West, J.B., Maurer, C.R.: Predicting error in rigid-body point-based registration. IEEE Trans. Med. Imaging 17(5), 604–702 (1998)

    Article  Google Scholar 

  19. Kikinis, V.K., Pieper, S.D.: 3D slicer: a platform for subject-specific image analysis, visualization, and clinical support. In: Intraoperative Imaging and Image-Guided Therapy, pp. 277–289 (2014)

    Google Scholar 

Download references

Acknowledgments

This research was supported in part by the National Institutes of Health under award R01EB024864.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxwell Emerson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Emerson, M. et al. (2021). A Recurrent Neural Network Approach to Roll Estimation for Needle Steering. In: Siciliano, B., Laschi, C., Khatib, O. (eds) Experimental Robotics. ISER 2020. Springer Proceedings in Advanced Robotics, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-030-71151-1_30

Download citation

Publish with us

Policies and ethics