Abstract
Steerable needles are a promising technology for delivering targeted therapies in the body in a minimally invasive fashion via controlled, actively steered insertions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Webster III, R.J., Kim, J.S., Cowan, N.J., Chirikjian, G.S., Okamura, A.M.: Nonholonomic modeling of needle steering. IJRR 25(5–6), 509–525 (2006)
Rucker, D.C., Das, J., Gilbert, H.B., Swaney, P.J., Miga, M.I., Sarkar, N., Webster III, R.J.: Sliding mode control of steerable needles. IEEE TRO 29(5), 1289–1299 (2013)
Minhas, D.S., Engh, J.A., Fenske, M.M., Riviere, C.N.: Modeling of needle steering via duty-cycled spinning. In: EMBS Proceedings, pp. 2756–2759 (2007)
Swensen, J.P., Lin, M., Okamura, A.M., Cowan, N.J.: Torsional dynamics of steerable needles: modeling and fluoroscopic guidance. IEEE TBME 61(11), 2707–2717 (2014)
Reed, K.B., Okamura, A.M., Cowan, N.J.: Modeling and control of needles with torsional friction. IEEE TBME 56(12), 2905–2916 (2009)
Kallem, V., Cowan, N.J.: Image guidance of flexible tip-steerable needles. IEEE TRO 25(1), 191–196 (2009)
Fallahi, B., Rossa, C., Sloboda, R., Usmani, N., Tavakoli, M.: Partial estimation of needle tip orientation in generalized coordinates in ultrasound image-guided needle insertion. In: IEEE AIM, pp. 1604–1609 (2016)
Wood, N.A., Shahrour, K., Ost, M.C., Riviere, C.N.: Needle steering system using duty-cycled rotation for percutaneous kidney access. In: EMBS Proceedings, pp. 5432–5435 (2010)
Kuutti, S., Bowden, R., Jin, Y., Barber, P., Fallah, S.: A survey of deep learning applications to autonomous vehicle control. arXiv, 1–23 (2019)
Avila-Carrasco, C., Ruppel, M., Persad, R., Bahl, A., Dogramadzi, S.: Analytical vs data-driven approach of modelling brachytherapy needle deflection. IEEE TMRB 2(4), 519–528 (2020)
Greff, K., Srivastava, R.K., Koutnik, J., Steunebrink, B.R., Schmidhuber, J.: LSTM: a search space odyssey. IEEE Trans. Neural Netw. Learn. Syst. 28(10), 2222–2232 (2017)
Amack, S.R., Margaret, M., Jason, E., Tayfun, E.E., Maxwell, K., Alan, M., Fabien, A., Jason and Gafford, J. Alterovitz, R.: Design and control of a compact modular robot for transbronchial lung biopsy. In: SPIE Medical Imaging: Image-Guided Procedures, Robotic Interventions, and Modeling (2019)
Rox, M., Emerson, M., Ertop, T.S., Fried, I., Fu, M., Hoelscher, J., Kuntz, A., Granna, J., Mitchell, J., Lester, M., Maldonado, F., Gillaspie, E.A., Akulian, J.A., Alterovitz, R., Webster, R.J.: Decoupling steerability from diameter: helical dovetail laser patterning for steerable needles. IEEE Access 8, 181411–181419 (2020)
Swaney, P.J., Burgner, J., Gilbert, H.B., Webster III, R.J.: A flexure-based steerable needle: high curvature with reduced tissue damage. IEEE TBME 60(4), 906–909 (2013)
Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: 3rd International Conference on Learning Representations Proceedings, pp. 1–15 (2015)
Gal, Z., Ghahramani, Y.: A theoretically grounded application of dropout in recurrent neural networks. In: NIPS Proceedings (2016)
Choset, H.M., Hutchinson, S., Lynch, K.M., Kantor, G., Burgard, W., Kavraki, L.E., Thrun, S.: Principles of Robot Motion: Theory, Algorithms, and Implementation. MIT press, Cambridge (2005)
Fitzpatrick, J.M., West, J.B., Maurer, C.R.: Predicting error in rigid-body point-based registration. IEEE Trans. Med. Imaging 17(5), 604–702 (1998)
Kikinis, V.K., Pieper, S.D.: 3D slicer: a platform for subject-specific image analysis, visualization, and clinical support. In: Intraoperative Imaging and Image-Guided Therapy, pp. 277–289 (2014)
Acknowledgments
This research was supported in part by the National Institutes of Health under award R01EB024864.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Emerson, M. et al. (2021). A Recurrent Neural Network Approach to Roll Estimation for Needle Steering. In: Siciliano, B., Laschi, C., Khatib, O. (eds) Experimental Robotics. ISER 2020. Springer Proceedings in Advanced Robotics, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-030-71151-1_30
Download citation
DOI: https://doi.org/10.1007/978-3-030-71151-1_30
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-71150-4
Online ISBN: 978-3-030-71151-1
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)