Data-Driven Design of Energy-Shaping Controllers for Swing-Up Control of Underactuated Robots | SpringerLink
Skip to main content

Data-Driven Design of Energy-Shaping Controllers for Swing-Up Control of Underactuated Robots

  • Conference paper
  • First Online:
Experimental Robotics (ISER 2020)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 19))

Included in the following conference series:

  • 2367 Accesses

Abstract

We propose a novel data-driven procedure to train a neural network for the swing-up control of underactuated robotic systems. Our approach is inspired by several recent developments ranging from nonlinear control theory to machine learning. We embed a neural network indirectly into the equations of motion of the robotic manipulator as its control input. Using familiar results from passivity-based and energy-shaping control literature, this control function is determined by the appropriate gradients of a neural network, acting as an energy-like (Lyapunov) function. We encode the task of swinging-up robotic systems through the use of transverse coordinates and goal sets; which drastically accelerates the rate of learning by providing a concise target for the neural network. We demonstrate the efficacy of the algorithm with both numerical simulations and experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 32031
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 40039
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 40039
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Åström, K.J., Furuta, K.: Swinging up a pendulum by energy control. Automatica 36(2), 287–295 (2000)

    Article  MathSciNet  Google Scholar 

  2. Chen, R.T.Q., Rubanova, Y., Bettencourt, J., Duvenaud, D.: Neural ordinary differential equations (2018)

    Google Scholar 

  3. Clevert, D.A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289 (2015)

  4. Conway, B.: Practical methods for optimal control using nonlinear programming (2002)

    Google Scholar 

  5. Deisenroth, M., Rasmussen, C.E.: Pilco: a model-based and data-efficient approach to policy search. In: Proceedings of the 28th International Conference on Machine Learning (ICML 2011), pp. 465–472 (2011)

    Google Scholar 

  6. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  7. Manchester, I.R.: Transverse dynamics and regions of stability for nonlinear hybrid limit cycles. arXiv preprint arXiv:1010.2241 (2010)

  8. Mason, P., Broucke, M., Piccoli, B.: Time optimal swing-up of the planar pendulum. IEEE Trans. Autom. Control 53(8), 1876–1886 (2008)

    Article  MathSciNet  Google Scholar 

  9. Mori, S., Nishihara, H., Furuta, K.: Control of unstable mechanical system control of pendulum. Int. J. Control 23(5), 673–692 (1976)

    Article  Google Scholar 

  10. Ortega, R., Spong, M.W., Gómez-Estern, F., Blankenstein, G.: Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment. IEEE Trans. Autom. Control 47(8), 1218–1233 (2002)

    Article  MathSciNet  Google Scholar 

  11. Park, M.S., Chwa, D.: Swing-up and stabilization control of inverted-pendulum systems via coupled sliding-mode control method. IEEE Trans. Ind. Electron. 56(9), 3541–3555 (2009)

    Article  Google Scholar 

  12. Pontryagin, L.S., Mishchenko, E., Boltyanskii, V., Gamkrelidze, R.: The mathematical theory of optimal processes (1962)

    Google Scholar 

  13. Quanser: Linear Servo Base Unit with Inverted Pendulum (2013). Rev. 1.0

    Google Scholar 

  14. Rackauckas, C., Ma, Y., Martensen, J., Warner, C., Zubov, K., Supekar, R., Skinner, D., Ramadhan, A.: Universal differential equations for scientific machine learning (2020)

    Google Scholar 

  15. van der Schaft, A.J., Van Der Schaft, A.: L2-gain and Passivity Techniques in Nonlinear Control, vol. 2. Springer, Heidelberg (2000)

    Google Scholar 

  16. Shiriaev, A., Perram, J.W., Canudas-de Wit, C.: Constructive tool for orbital stabilization of underactuated nonlinear systems: virtual constraints approach. IEEE Trans. Autom. Control 50(8), 1164–1176 (2005)

    Article  MathSciNet  Google Scholar 

  17. Shiriaev, A.S., Freidovich, L.B.: Transverse linearization for impulsive mechanical systems with one passive link. IEEE Trans. Autom. Control 54(12), 2882–2888 (2009)

    Article  MathSciNet  Google Scholar 

  18. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press, Cambridge (2018)

    MATH  Google Scholar 

  19. Zhong, Y.D., Dey, B., Chakraborty, A.: Symplectic ode-net: Learning hamiltonian dynamics with control. arXiv preprint arXiv:1909.12077 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wankun Sirichotiyakul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sirichotiyakul, W., Satici, A.C. (2021). Data-Driven Design of Energy-Shaping Controllers for Swing-Up Control of Underactuated Robots. In: Siciliano, B., Laschi, C., Khatib, O. (eds) Experimental Robotics. ISER 2020. Springer Proceedings in Advanced Robotics, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-030-71151-1_29

Download citation

Publish with us

Policies and ethics