Radar-Inertial State Estimation and Obstacle Detection for Micro-Aerial Vehicles in Dense Fog | SpringerLink
Skip to main content

Radar-Inertial State Estimation and Obstacle Detection for Micro-Aerial Vehicles in Dense Fog

  • Conference paper
  • First Online:
Experimental Robotics (ISER 2020)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 19))

Included in the following conference series:

  • 2716 Accesses

Abstract

Disaster response and search and rescue missions are among the most difficult missions in which an autonomous robot can be deployed. These require a robot to autonomously navigate chaotic, unstructured indoor and outdoor environments. However popular state estimation and mapping methods using vision and lidar are severely handicapped by fog, smoke, or other airborne particulates; conditions common in disaster scenarios. This work presents radar-based methods for state estimation and mapping that are not affected by smoke and fog. We demonstrate the performance of these methods are comparable to other popular methods in favorable conditions. We also demonstrate visual and lidar-based methods degrade quickly in fog, while our methods do not.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 32031
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 40039
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 40039
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barfoot, T., Forbes, R.J., Furgale, P.: Pose estimation using linearized rotations and quaternion algebra: Acta Astronaut. 68, 101–112 (2011)

    Google Scholar 

  2. Cen, S.H., Newman, P.: Precise ego-motion estimation with millimeter-wave radar under diverse and challenging conditions. In: 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, Brisbane, QLD (2018)

    Google Scholar 

  3. Cen, S.H., Newman, P.: Radar-only ego-motion estimation in difficult settings via graph matching. arXiv:1904.11476 [cs] (2019)

  4. Deming, W.: Statistical Adjustment of Data. J. Wiley & Sons, Incorporated (1943). https://books.google.com/books?id=9awgAAAAMAAJ

  5. Dickmann, J., Appenrodt, N., Bloecher, H., Brenk, C., Hackbarth, T., Hahn, M., Klappstein, J., Muntzinger, M., Sailer, A.: Radar contribution to highly automated driving. In: 2014 44th European Microwave Conference (2014)

    Google Scholar 

  6. Ebadi, K., Chang, Y., Palieri, M., Stephens, A., Hattel, A., Heiden, E., Thakur, A., Morrell, B., Carlone, L., Aghamohammadi, A.: Lamp: large-scale autonomous mapping and positioning for exploration of perceptually-degraded subterranean environments. In: 2020 IEEE International Conference on Robotics and Automation (ICRA). Paris, France (2020)

    Google Scholar 

  7. Forster, C., Carlone, L., Dellaert, F., Scaramuzza, D.: On-manifold preintegration for real-time visual-inertial odometry. Trans. Rob. 33(1), 1–21 (2017)

    Article  Google Scholar 

  8. Geneva, P., Eckenhoff, K., Yang, Y., Huang, G.: Lips: lidar-inertial 3D plane slam. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 123–130 (2018)

    Google Scholar 

  9. Hornung, A., Wurm, K.M., Bennewitz, M., Stachniss, C., Burgard, W.: OctoMap: An efficient probabilistic 3D mapping framework based on octrees. Autonomous Robots (2013). Software available at http://octomap.github.com

  10. Khattak, S., Papachristos, C., Alexis, K.: Keyframe-based direct thermal-inertial odometry. CoRR abs/1903.00798 (2019). http://arxiv.org/abs/1903.00798

  11. Kramer, A., Stahoviak, C., Santamaria-Navarro, A., Aghamohammadi, A., Heckman, C.: booktitle=2020 IEEE International Conference on Robotics and Automation (ICRA)

    Google Scholar 

  12. Leutenegger, S., Furgale, P., Rabaud, V., Chli, M., Konolige, K., Siegwart, R.: Keyframe-based visual-inertial slam using nonlinear optimization (2013)

    Google Scholar 

  13. Leutenegger, S., Lynen, S., Bosse, M., Siegwart, R., Furgale, P.: Keyframe-based visual-inertial odometry using nonlinear optimization. Int. J. Robot. Res. 34(3), 314–334 (2015)

    Article  Google Scholar 

  14. Michael, N., Shen, S., Mohta, K., Kumar, V., Nagatani, K., Okada, Y., Kiribayashi, S., Otake, K., Yoshida, K., Ohno, K., Takeuchi, E., Tadokoro, S.: Collaborative mapping of an earthquake-damaged building via ground and aerial robots. J. Field Robot. 29(5), 832–841 (2012)

    Article  Google Scholar 

  15. Mourikis, A.I., Roumeliotis, S.I.: A multi-state constraint kalman filter for vision-aided inertial navigation. In: Proceedings 2007 IEEE International Conference on Robotics and Automation, , Rome, Italy, pp. 3565–3572. IEEE (2007)

    Google Scholar 

  16. O’Toole, M., Achar, S., Narasimhan, S.G., Kutulakos, K.N.: Homogeneous codes for energy-efficient illumination and imaging. ACM Trans. Graph. 34(4), 1–13 (2015)

    Article  Google Scholar 

  17. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. arXiv:1612.00593 [cs] (2017). http://arxiv.org/abs/1612.00593. ArXiv: 1612.00593

  18. Santamaria-Navarro, A., Loianno, G., Solà, J., Kumar, V., Andrade-Cetto, J.: Autonomous navigation of micro aerial vehicles using high-rate and low-cost sensors. Autonom. Robots 42(6), 1263–1280 (2018)

    Article  Google Scholar 

  19. Santamaria-Navarro, A., Solà, J., Andrade-Cetto, J.: High-frequency mav state estimation using low-cost inertial and optical flow measurement units. In: Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on, pp. 1864–1871 (2015)

    Google Scholar 

  20. Schuster, F., Keller, C.G., Rapp, M., Haueis, M., Curio, C.: Landmark based radar SLAM using graph optimization. In: 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), pp. 2559–2564 (2016)

    Google Scholar 

  21. Schuster, F., Wörner, M., Keller, C.G., Haueis, M., Curio, C.: Robust localization based on radar signal clustering, pp. 839–844 (2016)

    Google Scholar 

  22. Shen, S., Mulgaonkar, Y., Michael, N., Kumar, V.S.A.: Vision-based state estimation and trajectory control towards high-speed flight with a quadrotor. In: Robotics: Science and Systems (2013)

    Google Scholar 

  23. Sibley, G.: A Sliding Window Filter for SLAM p. 17

    Google Scholar 

  24. Tomic, T., Schmid, K., Lutz, P., Domel, A., Kassecker, M., Mair, E., Grixa, I.L., Ruess, F., Suppa, M., Burschka, D.: Toward a fully autonomous UAV: research platform for indoor and outdoor urban search and rescue. IEEE Robot. Autom. Mag. 19(3), 46–56 (2012). https://doi.org/10.1109/MRA.2012.2206473

    Article  Google Scholar 

  25. Torr, P.H.S., Zisserman, A.: MLESAC: a new robust estimator with application to estimating image geometry. Comput. Vis. Image Underst. 78, 138–156 (2000)

    Article  Google Scholar 

  26. Vivet, D., Checchin, P., Chapuis, R.: Localization and Mapping Using Only a Rotating FMCW Radar Sensor. Sensors (Basel, Switzerland) 13(4), 4527–4552 (2013). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3673098/

  27. Zhang, J., Singh, S.: Loam: lidar odometry and mapping in real-time. In: Robotics: Science and Systems (2014)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the members of the CoStar team for sharing both their lab space and technical expertise. We would also like to thank Shakeeb Ahmad of the CU Boulder Mechanical Engineering department for his help in demonstrating our radar state estimator’s use in closed-loop control of a micro-aerial vehicle as shown in our video submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Kramer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kramer, A., Heckman, C. (2021). Radar-Inertial State Estimation and Obstacle Detection for Micro-Aerial Vehicles in Dense Fog. In: Siciliano, B., Laschi, C., Khatib, O. (eds) Experimental Robotics. ISER 2020. Springer Proceedings in Advanced Robotics, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-030-71151-1_1

Download citation

Publish with us

Policies and ethics