Attributed Heterogeneous Network Embedding for Link Prediction | SpringerLink
Skip to main content

Attributed Heterogeneous Network Embedding for Link Prediction

  • Conference paper
  • First Online:
Knowledge Management and Acquisition for Intelligent Systems (PKAW 2021)

Abstract

Network embedding aims to embed the network into a low-dimensional vector space wherein the structural characteristic of the network and the attribute information of nodes are preserved as much as possible. Many existing network embedding works focused on the homogeneous or heterogeneous plain networks. However, networks in the real world are usually not plain since the nodes in the networks have rich attributes, and these attributes play important roles for encoding nodes’ vector representations. Although some works took into account the attribute information, they could not handle the homogeneous and heterogeneous structure information of the network simultaneously. In order to solve this problem, a new network embedding method that considers both the network’s homogeneous and heterogeneous structure information and nodes attribute information simultaneously is proposed in this paper. The proposed method first obtains nodes attribute information, homogeneous and heterogeneous structure information as three views of the network and learns network embeddings of the three views through different technologies respectively. Then, an attention mechanism is utilized to fuse the embedding results learned from the three views to obtain the final vector representations of nodes. We verify the performance of the proposed model through link prediction tasks on four real-world datasets, and extensive experimental results show that the proposed model outperforms the advanced baselines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.aminer.cn/citation.

  2. 2.

    The 8 venues include CVPR, ICCV, ECCV, PAKDD, ECML, NIPS, ICML and EDBT.

  3. 3.

    The 11 venues include KDD, ICDM, SDM, ECIR, SIGIR, AAAI, WWW, IJCAI, VLDB, ICDE and SIGMOD.

  4. 4.

    https://www.yelp.com/dataset.

References

  1. Bhagat, S., Cormode, G., Muthukrishnan, S.: Node classification in social networks. In: Aggarwal, C. (ed.) Social Network Data Analytics, pp. 115–148. Springer, Boston (2011). https://doi.org/10.1007/978-1-4419-8462-3_5

    Chapter  Google Scholar 

  2. Cao, S., Lu, W., Xu, Q.: Grarep: learning graph representations with global structural information. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, pp. 891–900 (2015)

    Google Scholar 

  3. Cao, S., Lu, W., Xu, Q.: Deep neural networks for learning graph representations. In: Thirtieth AAAI Conference on Artificial Intelligence (2016)

    Google Scholar 

  4. Cen, Y., Zou, X., Zhang, J., Yang, H., Zhou, J., Tang, J.: Representation learning for attributed multiplex heterogeneous network. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1358–1368 (2019)

    Google Scholar 

  5. Chang, S., Han, W., Tang, J., Qi, G.J., Aggarwal, C.C., Huang, T.S.: Heterogeneous network embedding via deep architectures. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 119–128 (2015)

    Google Scholar 

  6. Cui, P., Wang, X., Pei, J., Zhu, W.: A survey on network embedding. IEEE Trans. Knowl. Data Eng. 31(5), 833–852 (2018)

    Article  Google Scholar 

  7. Dong, Y., Chawla, N.V., Swami, A.: metapath2vec: scalable representation learning for heterogeneous networks. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 135–144 (2017)

    Google Scholar 

  8. Fan, S., Shi, C., Wang, X.: Abnormal event detection via heterogeneous information network embedding. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, pp. 1483–1486 (2018)

    Google Scholar 

  9. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  10. Goyal, P., Ferrara, E.: Graph embedding techniques, applications, and performance: a survey. Knowl.-Based Syst. 151, 78–94 (2018)

    Article  Google Scholar 

  11. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864 (2016)

    Google Scholar 

  12. Hamilton, W.L., Ying, R., Leskovec, J.: Representation learning on graphs: methods and applications. arXiv preprint arXiv:1709.05584 (2017)

  13. Huang, X., Li, J., Hu, X.: Label informed attributed network embedding. In: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, pp. 731–739 (2017)

    Google Scholar 

  14. Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. J. Am. Soc. Inform. Sci. Technol. 58(7), 1019–1031 (2007)

    Article  Google Scholar 

  15. Liu, M., Liu, J., Chen, Y., Wang, M., Chen, H., Zheng, Q.: AHNG: representation learning on attributed heterogeneous network. Inf. Fusion 50, 221–230 (2019)

    Article  Google Scholar 

  16. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701–710 (2014)

    Google Scholar 

  17. Shi, C., Hu, B., Zhao, W.X., Philip, S.Y.: Heterogeneous information network embedding for recommendation. IEEE Trans. Knowl. Data Eng. 31(2), 357–370 (2018)

    Article  Google Scholar 

  18. Tang, J., Liu, J., Zhang, M., Mei, Q.: Visualizing large-scale and high-dimensional data. In: Proceedings of the 25th International Conference on World Wide Web, pp. 287–297 (2016)

    Google Scholar 

  19. Tang, J., Qu, M., Mei, Q.: PTE: predictive text embedding through large-scale heterogeneous text networks. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1165–1174 (2015)

    Google Scholar 

  20. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: large-scale information network embedding. In: Proceedings of the 24th International Conference on World Wide Web, pp. 1067–1077 (2015)

    Google Scholar 

  21. Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks, pp. 990–998 (2008)

    Google Scholar 

  22. Tu, C., Liu, H., Liu, Z., Sun, M.: Cane: context-aware network embedding for relation modeling. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (vol. 1: Long Papers), pp. 1722–1731 (2017)

    Google Scholar 

  23. Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1225–1234 (2016)

    Google Scholar 

  24. Wang, X., et al.: Heterogeneous graph attention network. In: The World Wide Web Conference, pp. 2022–2032 (2019)

    Google Scholar 

  25. Yang, C., Liu, Z., Zhao, D., Sun, M., Chang, E.: Network representation learning with rich text information. In: Twenty-Fourth International Joint Conference on Artificial Intelligence (2015)

    Google Scholar 

  26. Zhang, D., Yin, J., Zhu, X., Zhang, C.: Collective classification via discriminative matrix factorization on sparsely labeled networks. In: Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, pp. 1563–1572 (2016)

    Google Scholar 

  27. Zhang, Z., et al.: ANRL: attributed network representation learning via deep neural networks. In: IJCAI 2018, pp. 3155–3161 (2018)

    Google Scholar 

Download references

Acknowledgements

This research was supported by Natural Science Foundation of China (Grant no. 61672284), Natural Science Foundation of Jiangsu Province (Grant no. BK20171418), China Postdoctoral Science Foundation (Grant no. 2016M591841), Jiangsu Planned Projects for Postdoctoral Research Funds (No. 1601225C).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donghai Guan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, T., Yuan, W., Guan, D. (2021). Attributed Heterogeneous Network Embedding for Link Prediction. In: Uehara, H., Yamaguchi, T., Bai, Q. (eds) Knowledge Management and Acquisition for Intelligent Systems. PKAW 2021. Lecture Notes in Computer Science(), vol 12280. Springer, Cham. https://doi.org/10.1007/978-3-030-69886-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69886-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69885-0

  • Online ISBN: 978-3-030-69886-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics