Parallel-Connected Residual Channel Attention Network for Remote Sensing Image Super-Resolution | SpringerLink
Skip to main content

Parallel-Connected Residual Channel Attention Network for Remote Sensing Image Super-Resolution

  • Conference paper
  • First Online:
Computer Vision – ACCV 2020 Workshops (ACCV 2020)

Abstract

In recent years, convolutional neural networks (CNNs) have obtained promising results in single-image super-resolution (SR) for remote sensing images. However, most existing methods are inadequate for remote sensing image SR due to the high computational cost required. Therefore, enhancing the representation ability with fewer parameters and a shorter prediction time is a challenging and critical task for remote sensing image SR. In this paper, we propose a novel CNN called a parallel-connected residual channel attention network (PCRCAN). Specifically, inspired by group convolution, we propose a parallel module with feature aggregation modules in PCRCAN. The parallel module significantly reduces the model parameters and fully integrates feature maps by widening the network architecture. In addition, to reduce the difficulty of training a complex deep network and improve model performance, we use a residual channel attention block as the basic feature mapping unit instead of a single convolutional layer. Experiments on a public remote sensing dataset UC Merced land-use dataset revealed that PCRCAN achieved higher accuracy, efficiency, and visual improvement than most state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Li, F., Xin, L., Guo, Y., Gao, D., Kong, X., Jia, X.: Super-resolution for GaoFen-4 remote sensing images. IEEE Geosci. Remote Sens. Lett. 15, 28–32 (2017)

    Article  Google Scholar 

  2. Xu, W., Xu, G., Wang, Y., Sun, X., Lin, D., Wu, Y.: High quality remote sensing image super-resolution using deep memory connected network. In: IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium, pp. 8889–8892. IEEE (2018)

    Google Scholar 

  3. Zhang, L., Wu, X.: An edge-guided image interpolation algorithm via directional filtering and data fusion. IEEE Trans. Image Process. 15, 2226–2238 (2006)

    Article  Google Scholar 

  4. Hung, K.W., Siu, W.C.: Robust soft-decision interpolation using weighted least squares. IEEE Trans. Image Process. 21, 1061–1069 (2011)

    Article  MathSciNet  Google Scholar 

  5. Zhang, K., Gao, X., Tao, D., Li, X.: Single image super-resolution with non-local means and steering kernel regression. IEEE Trans. Image Process. 21, 4544–4556 (2012)

    Article  MathSciNet  Google Scholar 

  6. Peleg, T., Elad, M.: A statistical prediction model based on sparse representations for single image super-resolution. IEEE Trans. Image Process. 23, 2569–2582 (2014)

    Article  MathSciNet  Google Scholar 

  7. Wang, L., Guo, Y., Liu, L., Lin, Z., Deng, X., An, W.: Deep video super-resolution using HR optical flow estimation. IEEE Trans. Image Process. 29, 4323–4336 (2020)

    Article  Google Scholar 

  8. Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38, 295–307 (2015)

    Article  Google Scholar 

  9. Kim, J., Kwon Lee, J., Mu Lee, K.: Accurate image super-resolution using very deep convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1646–1654 (2016)

    Google Scholar 

  10. Kim, J., Kwon Lee, J., Mu Lee, K.: Deeply-recursive convolutional network for image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1637–1645 (2016)

    Google Scholar 

  11. Tai, Y., Yang, J., Liu, X.: Image super-resolution via deep recursive residual network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3147–3155 (2017)

    Google Scholar 

  12. Tai, Y., Yang, J., Liu, X., Xu, C.: MemNet: a persistent memory network for image restoration. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4539–4547 (2017)

    Google Scholar 

  13. Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1874–1883 (2016)

    Google Scholar 

  14. Dong, C., Loy, C.C., Tang, X.: Accelerating the super-resolution convolutional neural network. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 391–407. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_25

    Chapter  Google Scholar 

  15. Tong, T., Li, G., Liu, X., Gao, Q.: Image super-resolution using dense skip connections. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4799–4807 (2017)

    Google Scholar 

  16. Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image restoration. IEEE Trans. Pattern Anal. Mach. Intell. (2020)

    Google Scholar 

  17. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 294–310. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_18

    Chapter  Google Scholar 

  18. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  19. Mao, X., Shen, C., Yang, Y.B.: Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections. In: Advances in Neural Information Processing Systems, pp. 2802–2810 (2016)

    Google Scholar 

  20. Han, W., Chang, S., Liu, D., Yu, M., Witbrock, M., Huang, T.S.: Image super-resolution via dual-state recurrent networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1654–1663 (2018)

    Google Scholar 

  21. Li, J., Fang, F., Mei, K., Zhang, G.: Multi-scale residual network for image super-resolution. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11212, pp. 527–542. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01237-3_32

    Chapter  Google Scholar 

  22. Lei, S., Shi, Z., Zou, Z.: Super-resolution for remote sensing images via local-global combined network. IEEE Geosci. Remote Sens. Lett. 14, 1243–1247 (2017)

    Article  Google Scholar 

  23. Haut, J.M., Fernandez-Beltran, R., Paoletti, M.E., Plaza, J., Plaza, A., Pla, F.: A new deep generative network for unsupervised remote sensing single-image super-resolution. IEEE Geosci. Remote Sens. Lett. 56, 6792–6810 (2018)

    Article  Google Scholar 

  24. Xu, W., Xu, G., Wang, Y., Sun, X., Lin, D., Wu, Y.: Deep memory connected neural network for optical remote sensing image restoration. Remote Sens. 10, 1893 (2018)

    Article  Google Scholar 

  25. Li, Y., Iwamoto, Y., Lin, L., Xu, R., Chen, Y.W.: VolumeNet: a lightweight parallel network for super-resolution of medical volumetric data. arXiv preprint arXiv:2010.08357 (2020)

  26. Li, Y., Iwamoto, Y., Lin, L., Xu, R., Chen, Y.W.: VolumeNet: a lightweight parallel network for super-resolution of medical volumetric data. IEEE Trans. Image Process. (2020, submitted)

    Google Scholar 

  27. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  28. Lim, B., Son, S., Kim, H., Nah, S., Mu Lee, K.: Enhanced deep residual networks for single image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 136–144 (2017)

    Google Scholar 

  29. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: ICML (2010)

    Google Scholar 

  30. Ahn, N., Kang, B., Sohn, K.-A.: Fast, accurate, and lightweight super-resolution with cascading residual network. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 256–272. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_16

    Chapter  Google Scholar 

  31. Zhao, H., Gallo, O., Frosio, I., Kautz, J.: Loss functions for image restoration with neural networks. IEEE Trans. Comput. Imaging 3, 47–57 (2016)

    Article  Google Scholar 

  32. Zhang, D., Shao, J., Li, X., Shen, H.T.: Remote sensing image super-resolution via mixed high-order attention network. IEEE Trans. Geosci. Remote Sens. (2020)

    Google Scholar 

  33. Xia, G.S., et al.: AID: a benchmark data set for performance evaluation of aerial scene classification. IEEE Trans. Geosci. Remote Sens. 55, 3965–3981 (2017)

    Article  Google Scholar 

  34. Yang, Y., Newsam, S.: Bag-of-visual-words and spatial extensions for land-use classification. In: Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 270–279 (2010)

    Google Scholar 

  35. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004)

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported in part by Japan Society for Promotion of Science (JSPS) under Grant No. 19J13820, the Grant-in-Aid for Young Scientists (18K18078), Grant-in-Aid for Scientific Research (B) (18H03267) and Grant-in-Aid for Challenging Research (Exploratory) (20K21821).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lanfen Lin or Yen-Wei Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y., Iwamoto, Y., Lin, L., Chen, YW. (2021). Parallel-Connected Residual Channel Attention Network for Remote Sensing Image Super-Resolution. In: Sato, I., Han, B. (eds) Computer Vision – ACCV 2020 Workshops. ACCV 2020. Lecture Notes in Computer Science(), vol 12628. Springer, Cham. https://doi.org/10.1007/978-3-030-69756-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69756-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69755-6

  • Online ISBN: 978-3-030-69756-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics