Abstract
Statistical and adversarial adaptation are currently two extensive categories of neural network architectures in unsupervised deep domain adaptation. The latter has become the new standard due to its good theoretical foundation and empirical performance. However, there are two shortcomings. First, recent studies show that these approaches focus too much on easily transferable features and thus neglect important discriminative information. Second, adversarial networks are challenging to train. We addressed the first issue by the alignment of transferable spectral properties within an adversarial model to balance the focus between the easily transferable features and the necessary discriminatory features, while at the same time limiting the learning of domain-specific semantics by relevance considerations. Second, we stabilized the discriminator networks training procedure by Spectral Normalization employing the Lipschitz continuous gradients. We provide a theoretical and empirical evaluation of our improved approach and show its effectiveness in a performance study on standard benchmark data sets against various other state of the art methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Volume 2016-December, pp. 770–778 (2016)
Young, T., Hazarika, D., Poria, S., Cambria, E.: Recent trends in deep learning based natural language processing [review article]. IEEE Comput. Intell. Mag. 13, 55–75 (2018)
Sun, B., Saenko, K.: Deep CORAL: correlation alignment for deep domain adaptation. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 443–450. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_35
Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 27, pp. 3320–3328. Curran Associates, Inc. (2014)
Long, M., Cao, Y., Wang, J., Jordan, M.I.: Learning transferable features with deep adaptation networks. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Volume 37 of Proceedings of Machine Learning Research, Lille, France, pp. 97–105. PMLR (2015)
Zellinger, W., Grubinger, T., Lughofer, E., Natschläger, T., Saminger-Platz, S.: Central moment discrepancy (CMD) for domain-invariant representation learning. In: 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, 24–26 April 2017, Conference Track Proceedings (2017)
Chen, X., Wang, S., Long, M., Wang, J.: Transferability vs. discriminability: batch spectral penalization for adversarial domain adaptation. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Machine Learning. Volume 97 of Proceedings of Machine Learning Research, Long Beach, California, USA, pp. 1081–1090. PMLR (2019)
Ganin, Y., Lempitsky, V.S.: Unsupervised domain adaptation by backpropagation. In: Proceedings of the 32nd International Conference on Machine Learning, ICLR 2015, Lille, France, 6–11 July 2015, pp. 1180–1189 (2015)
Goodfellow, I., et al.: Generative adversarial nets. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 27, pp. 2672–2680. Curran Associates, Inc. (2014)
Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., Vaughan, J.W.: A theory of learning from different domains. Mach. Learn. 79, 151–175 (2010). https://doi.org/10.1007/s10994-009-5152-4
Chen, X., Wang, S., Fu, B., Long, M., Wang, J.: Catastrophic forgetting meets negative transfer: batch spectral shrinkage for safe transfer learning. In: Wallach, H., et al. (eds.) Advances in Neural Information Processing Systems 32, pp. 1908–1918. Curran Associates, Inc. (2019)
Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for generative adversarial networks. In: International Conference on Learning Representations (2018)
Long, M., Zhu, H., Wang, J., Jordan, M.I.: Deep transfer learning with joint adaptation networks. In: Proceedings of the 34th International Conference on Machine Learning - Volume 70. ICML 2017, pp. 2208–2217. JMLR.org (2017)
Hoffman, J., et al.: CyCADA: cycle-consistent adversarial domain adaptation. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning. Volume 80 of Proceedings of Machine Learning Research, Stockholmsmässan, Stockholm, Sweden, pp. 1989–1998. PMLR (2018)
Shen, J., Qu, Y., Zhang, W., Yu, Y.: Wasserstein distance guided representation learning for domain adaptation. In: McIlraith, S.A., Weinberger, K.Q. (eds.) Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), New Orleans, Louisiana, USA, 2–7 February 2018, pp. 4058–4065. AAAI Press (2018)
Long, M., Cao, Z., Wang, J., Jordan, M.I.: Conditional adversarial domain adaptation. In: Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, 3–8 December 2018, Montréal, Canada, pp. 1647–1657 (2018)
Li, S., Liu, C.H., Xie, B., Su, L., Ding, Z., Huang, G.: Joint adversarial domain adaptation. In: Proceedings of the 27th ACM International Conference on Multimedia, New York, NY, USA, pp. 729–737. ACM (2019)
Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. J. Mach. Learn. Res. 13, 723–773 (2012)
Li, Y., Swersky, K., Zemel, R.: Generative moment matching networks. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Volume 37 of Proceedings of Machine Learning Research, Lille, France, pp. 1718–1727. PMLR (2015)
Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference on Machine Learning. Volume 70 of Proceedings of Machine Learning Research., International Convention Centre, Sydney, Australia, pp. 214–223 PMLR (2017)
Balaji, Y., Chellappa, R., Feizi, S.: Normalized Wasserstein for mixture distributions with applications in adversarial learning and domain adaptation. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6499–6507. IEEE (2019)
Zhao, L., Liu, Y.: Spectral normalization for domain adaptation. Information 11, 68 (2020)
Rakshit, S., Chaudhuri, U., Banerjee, B., Chaudhuri, S.: Class consistency driven unsupervised deep adversarial domain adaptation. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 657–666. IEEE (2019)
Arjovsky, M., Bottou, L.: Towards principled methods for training generative adversarial networks. In: 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, 24–26 April 2017, Conference Track Proceedings. OpenReview.net (2017)
Papadopoulo, T., Lourakis, M.I.A.: Estimating the Jacobian of the singular value decomposition: theory and applications. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1842, pp. 554–570. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45054-8_36
Petersen, K.B., Pedersen, M.S.: The Matrix Cookbook (2008)
Bro, R., Acar, E., Kolda, T.G.: Resolving the sign ambiguity in the singular value decomposition. J. Chemometr. 22, 135–140 (2008)
Zhao, H., Combes, R.T.D., Zhang, K., Gordon, G.: On learning invariant representations for domain adaptation. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Machine Learning. Volume 97 of Proceedings of Machine Learning Research, Long Beach, California, USA, pp. 7523–7532. PMLR (2019)
He, K., Sun, J.: Convolutional neural networks at constrained time cost. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 15, pp. 5353–5360. IEEE (2015)
Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to new domains. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 213–226. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_16
Venkateswara, H., Eusebio, J., Chakraborty, S., Panchanathan, S.: Deep hashing network for unsupervised domain adaptation. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Volume 2017-January, pp. 5385–5394. IEEE (2017)
Xu, R., Li, G., Yang, J., Lin, L.: Larger norm more transferable: an adaptive feature norm approach for unsupervised domain adaptation. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Volume 2019-October, pp. 1426–1435. IEEE (2019)
Li, M., Zhai, Y.M., Luo, Y.W., Ge, P.F., Ren, C.X.: Enhanced transport distance for unsupervised domain adaptation. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13936–13944 (2020)
Zhong, E., Fan, W., Yang, Q., Verscheure, O., Ren, J.: Cross validation framework to choose amongst models and datasets for transfer learning. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010. LNCS (LNAI), vol. 6323, pp. 547–562. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15939-8_35
Ben-David, S., Blitzer, J., Crammer, K., Pereira, F.: Analysis of representations for domain adaptation. In: Schölkopf, B., Platt, J.C., Hoffman, T. (eds.) Advances in Neural Information Processing Systems 19, pp. 137–144. MIT Press (2007)
van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 164, 10 (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Raab, C., Väth, P., Meier, P., Schleif, FM. (2021). Bridging Adversarial and Statistical Domain Transfer via Spectral Adaptation Networks. In: Ishikawa, H., Liu, CL., Pajdla, T., Shi, J. (eds) Computer Vision – ACCV 2020. ACCV 2020. Lecture Notes in Computer Science(), vol 12624. Springer, Cham. https://doi.org/10.1007/978-3-030-69535-4_28
Download citation
DOI: https://doi.org/10.1007/978-3-030-69535-4_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-69534-7
Online ISBN: 978-3-030-69535-4
eBook Packages: Computer ScienceComputer Science (R0)