A Statistical Linguistic Terms Interrelationship Approach to Query Expansion Based on Terms Selection Value | SpringerLink
Skip to main content

A Statistical Linguistic Terms Interrelationship Approach to Query Expansion Based on Terms Selection Value

  • Conference paper
  • First Online:
Information and Communication Technology and Applications (ICTA 2020)

Abstract

Query expansion has changed the information retrieval process to improve search performance. It aimed at improving the performance of information retrieval system to retrieve user information need. However, the term selection process still lacks precision results due to lexical ambiguity challenge. Many researchers have focused on pseudo-relevance feedback to select terms from the top-retrieved documents using some statistical linguistic techniques. However, their methods have limitations. This paper proposed a statistical linguistic terms interrelationship that exploits term selection in query expansion and retrieved relevance results. The proposed approach was tested on Malay, Hausa and Urdu Quran translated datasets and the results indicate that the proposed approach outperforms the previous method in retrieving relevance results. Future work should focus on the weighting score based on terms interrelationship to improve the query expansion performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chandra, G., Dwivedi, S.K.: Query expansion based on term selection for Hindi - English cross lingual IR. J. King Saud Univ. Comput. Inf. Sci. 32(3), 310–319 (2020)

    Google Scholar 

  2. Liu, Q., Huang, H., Lut, J., Gao, Y., Zhang, G.: Enhanced word embedding similarity measures using fuzzy rules for query expansion. In: 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–6. IEEE, Italy (2017)

    Google Scholar 

  3. Kuzi, S., Carmel, D.: Query expansion for email search. In: 40th Proceedings of the International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 849–852. ACM, Japan (2017)

    Google Scholar 

  4. Adubi, S.A., Misra, S.: Syllable-based text compression: a language case study. Arab. J. Sci. Eng. 41(8), 3089–3097 (2016). https://doi.org/10.1007/s13369-016-2070-1

    Article  Google Scholar 

  5. Akman, I., Bayindir, H., Ozleme, S., Akin, Z., Misra, S.: Lossless text compression technique using syllable based morphology. Int. Arab J. Inf. Technol. 8(1), 66–74 (2011)

    Google Scholar 

  6. Yusuf, N., Mohd Yunus, M.A., Wahid, N.: Arabic text stemming using query expansion method. In: Saeed, F., Mohammed, F., Gazem, N. (eds.) IRICT 2019. AISC, vol. 1073, pp. 3–11. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-33582-3_1

    Chapter  Google Scholar 

  7. Azad, H.K., Deepak, A.: A new approach for query expansion using Wikipedia and WordNet. Inf. Sci. 492, 147–163 (2019). https://doi.org/10.1016/j.ins.2019.04.019

    Article  Google Scholar 

  8. Sankhavara, J.: Feature weighting in finding feedback documents for query expansion in biomedical document retrieval. SN Comput. Sci. 1(2), 1–7 (2020). https://doi.org/10.1007/s42979-020-0069-x

    Article  Google Scholar 

  9. Singh, J., Sharan, A.: A new fuzzy logic-based query expansion model for efficient information retrieval using relevance feedback approach. Neural Comput. Appl. 28(9), 2557–2580 (2016). https://doi.org/10.1007/s00521-016-2207-x

    Article  Google Scholar 

  10. Khennak, I., Drias, H.: An accelerated PSO for query expansion in web information retrieval: application to medical dataset. Appl. Intell. 47(3), 793–808 (2017). https://doi.org/10.1007/s10489-017-0924-1

    Article  Google Scholar 

  11. Gupta, Y., Saini, A.: A novel fuzzy-PSO term weighting automatic query expansion approach using combined semantic filtering. Knowl. Based Syst. 136(15), 97–120 (2017)

    Article  Google Scholar 

  12. Gupta, Y., Saini, A.: A novel term selection based automatic query expansion approach using PRF and semantic filtering. Int. J. Adv. Comput. Res. 8, 130–137 (2019)

    Google Scholar 

  13. Yusuf, N., Mohd Yunus, M.A., Wahid, N., Mustapha, A., Mohd Najib, M.S.: A terms interrelationship approach to query expansion based on terms selection value. In: 5th International Conference of Reliable Information and Communication Technology, Springer (2020)

    Google Scholar 

  14. Abbache, A., Meziane, F., Belalem, G., Belkredim, F.Z.: Arabic query expansion using wordnet and association rules. Inf. Retr. Manag. Concepts, Methodol. Tools, Appl. 3, 1239–1254 (2018)

    Google Scholar 

  15. Yusuf, N., Mohd Yunus, M.A., Wahid, N.: Query expansion based on explicit-relevant feedback and synonyms for english quran translation information retrieval. Int. J. Adv. Comput. Sci. Appl. 10(5), 227–234 (2019)

    Google Scholar 

  16. Saleh, S., Pecina, P.: Term selection for query expansion in medical cross-lingual information retrieval. In: Azzopardi, L., Stein, B., Fuhr, N., Mayr, P., Hauff, C., Hiemstra, D. (eds.) ECIR 2019. LNCS, vol. 11437, pp. 507–522. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-15712-8_33

    Chapter  Google Scholar 

  17. Abdul, J., Varlamis, I.: A knowledge-based semantic framework for query expansion. Inf. Process. Manag. 56(5), 1605–1617 (2019)

    Article  Google Scholar 

  18. Esposito, M., Damiano, E., Minutolo, A., De Pietro, G., Fujita, H.: Hybrid query expansion using lexical resources and word embeddings for sentence retrieval in question answering. Inf. Sci. (Ny) 514, 88–105 (2020)

    Article  Google Scholar 

  19. El Mahdaouy, A., El Alaoui, A.S.O., Gaussier, E.: Word-embedding-based pseudo-relevance feedback for Arabic information retrieval. J. Inf. Sci. 45(4), 429–442 (2019)

    Article  Google Scholar 

  20. ALMarwi, H., Ghurab, M., Al-Baltah, I.: A hybrid semantic query expansion approach for Arabic information retrieval. J. Big Data. 7(1), 1–19 (2020). https://doi.org/10.1186/s40537-020-00310-z

  21. Yusuf, N., Mohd Yunus, M.A., Wahid, N., Nawi, N.M., Samsudin, N.A., Arbaiy, N.: Query expansion method for quran search using semantic search and lucene ranking. J. Eng. Sci. Technol. 15(1), 675–692 (2020)

    Google Scholar 

  22. Yusuf, N., Mohd Yunus, M.A., Wahid, N., Nawi, N.M., Samsudin, N.A.: Enhancing query expansion method using word embedding. In: 9th International Conference System Engineering Technololgy ICSET 2019 - Proceeding, pp. 232–235. IEEE (2019)

    Google Scholar 

  23. Yusuf, N., Mohd Yunus, M.A., Wahid, N., Mustapha, A., Nawi, N.M., Samsudin, N.A.: Arabic text semantic-based query expansion. Int. J. Data Mining Model. Manag. (2020, in press)

    Google Scholar 

  24. Kadir, R.A., Yauri, R.A., Azman, A.: Semantic ambiguous query formulation using statistical Linguistics technique. Malaysian J. Comput. Sci. 31(5), 48–56 (2018)

    Article  Google Scholar 

  25. Hamid, Z.Z.: Quran Translations. Tanzil Documents. https://tanzil.net/trans/. Accessed 29 July 2019

  26. Noor, N.H.M., Sapuan, S., Bond, F.: Creating the open wordnet Bahasa. In: 25th Pacific Asia Conference on Language, Information and Computation, pp. 255–264 (2011)

    Google Scholar 

  27. Dictionary, C.: Cambridge dictionary. Cambridge University Press. https://dictionary.cambridge.org/dictionary/english-malaysian/. Accessed 24 Dec 2018

  28. CLE.: Urdu Wordnet 1.0. www.cle.org.pk/software/ling-resources/UrduWordNetWordlist.html. Accessed 03 Apr 2020

  29. Ijunoon, English to Urdu Text Translation, Ijunoon. https://www.ijunoon.com/urdudic/. Accessed 24 Dec 2018

  30. Saeed, A., Nawab, R.M.A, Stevenson, M., Rayson, P.: A sense annotated corpus for all-words Urdu word sense disambiguation. ACM Trans. Asian Low-Resource Lang. Inf. Process. 18(4), 1–9 (2019)

    Google Scholar 

  31. Shamsuddeen, K. https://kamus.com.ng/index.php. Accessed 30 Apr 2020

Download references

Acknowledgment

The authors would like to thank the Center for Graduate Studies Universiti Tun Hussein Onn Malaysia (UTHM), the Research Management Centre UTHM, the Faculty of Computer Science & Information Technology UTHM and indeed the faculty of Management Science, Abubakar Tafawa Balewa University Bauchi for their support during this research paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Amin Mohd Yunus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yusuf, N., Yunus, M.A.M., Wahid, N., Salleh, M.N.M. (2021). A Statistical Linguistic Terms Interrelationship Approach to Query Expansion Based on Terms Selection Value. In: Misra, S., Muhammad-Bello, B. (eds) Information and Communication Technology and Applications. ICTA 2020. Communications in Computer and Information Science, vol 1350. Springer, Cham. https://doi.org/10.1007/978-3-030-69143-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69143-1_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69142-4

  • Online ISBN: 978-3-030-69143-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics