Location-Specific vs Location-Agnostic Machine Learning Metamodels for Predicting Pasture Nitrogen Response Rate | SpringerLink
Skip to main content

Location-Specific vs Location-Agnostic Machine Learning Metamodels for Predicting Pasture Nitrogen Response Rate

  • Conference paper
  • First Online:
Pattern Recognition. ICPR International Workshops and Challenges (ICPR 2021)

Abstract

In this work we compare the performance of a location-specific and a location-agnostic machine learning metamodel for crop nitrogen response rate prediction. We conduct a case study for grass-only pasture in several locations in New Zealand. We generate a large dataset of APSIM simulation outputs and train machine learning models based on that data. Initially, we examine how the models perform at the location where the location-specific model was trained. We then perform the Mann–Whitney U test to see if the difference in the predictions of the two models (i.e. location-specific and location-agnostic) is significant. We expand this procedure to other locations to investigate the generalization capability of the models. We find that there is no statistically significant difference in the predictions of the two models. This is both interesting and useful because the location-agnostic model generalizes better than the location-specific model which means that it can be applied to virgin sites with similar confidence to experienced sites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Albert, A.T., Rhoades, A., Ganguly, S., Feldman, D., Jones, A.D., Prabhat, M.: Towards generative deep learning emulators for fast hydroclimate simulations. In: AGU Fall Meeting Abstracts, vol. 2018, pp. IN21C-0723, December 2018

    Google Scholar 

  2. Garrido Torres, J.A., Jennings, P.C., Hansen, M.H., Boes, J.R., Bligaard, T.: Low-Scaling algorithm for nudged elastic band calculations using a surrogate machine learning model. Phys. Rev. Lett. 122(15), 156001 (2019). https://doi.org/10.1103/PhysRevLett.122.156001

    Article  Google Scholar 

  3. Gillingham, A.G., Morton, J.D., Gray, M.H.: Pasture responses to phosphorus and nitrogen fertilisers on east coast hill country: 2. Clover and grass production from easy slopes. N. Z. J. Agric. Res. 51(2), 85–97 (2008). https://doi.org/10.1080/00288230809510438

    Article  Google Scholar 

  4. Gladish, D.W., Darnell, R., Thorburn, P.J., Haldankar, B.: Emulated multivariate global sensitivity analysis for complex computer models applied to agricultural simulators. J. Agric. Biol. Environ. Stat. 24(1), 130–153 (2018). https://doi.org/10.1007/s13253-018-00346-y

    Article  MathSciNet  MATH  Google Scholar 

  5. Goetz, J.N., Brenning, A., Petschko, H., Leopold, P.: Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling. Comput. Geosci. 81, 1–11 (2015). https://doi.org/10.1016/j.cageo.2015.04.007

    Article  Google Scholar 

  6. Holzworth, D.P., et al.: APSIM - evolution towards a new generation of agricultural systems simulation. Environ. Model. Softw. 62, 327–350 (2014). https://doi.org/10.1016/j.envsoft.2014.07.009

    Article  Google Scholar 

  7. Lima, A.R., Cannon, A.J., Hsieh, W.W.: Nonlinear regression in environmental sciences using extreme learning machines: a comparative evaluation. Environ. Model. Softw. 73, 175–188 (2015). https://doi.org/10.1016/j.envsoft.2015.08.002

    Article  Google Scholar 

  8. Lokers, R., Knapen, R., Janssen, S., van Randen, Y., Jansen, J.: Analysis of big data technologies for use in agro-environmental science. Environ. Model. Softw. 84, 494–504 (2016). https://doi.org/10.1016/j.envsoft.2016.07.017

    Article  Google Scholar 

  9. Mann, H.B., Whitney, D.R.: On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 18(1), 50–60 (1947). https://doi.org/10.1214/aoms/1177730491

    Article  MathSciNet  MATH  Google Scholar 

  10. Ramanantenasoa, M.M.J., Génermont, S., Gilliot, J.M., Bedos, C., Makowski, D.: Meta-modeling methods for estimating ammonia volatilization from nitrogen fertilizer and manure applications. J. Environ. Manage. 236, 195–205 (2019). https://doi.org/10.1016/j.jenvman.2019.01.066

    Article  Google Scholar 

  11. Ramankutty, P., Ryan, M., Lawes, R., Speijers, J., Renton, M.: Statistical emulators of a plant growth simulation model. Clim. Res. 55(3), 253–265 (2013). https://doi.org/10.3354/cr01138

    Article  Google Scholar 

  12. Shahhosseini, M., Martinez-Feria, R.A., Hu, G., Archontoulis, S.V.: Maize yield and nitrate loss prediction with machine learning algorithms. Environ. Res. Lett. 14(12), p. 124026, December 2019. https://doi.org/10.1088/1748-9326/ab5268

  13. Weber, T., Corotan, A., Hutchinson, B., Kravitz, B., Link, R.: Technical note: deep learning for creating surrogate models of precipitation in earth system models. Atmos. Chem. Phys. 20(4), 2303–2317 (2020). https://doi.org/10.5194/acp-20-2303-2020

    Article  Google Scholar 

  14. Zhang, R., Zen, R., Xing, J., Arsa, D.M.S., Saha, A., Bressan, S.: Hydrological process surrogate modelling and simulation with neural networks. In: Lauw, H.W., Wong, R.C.-W., Ntoulas, A., Lim, E.-P., Ng, S.-K., Pan, S.J. (eds.) PAKDD 2020. LNCS (LNAI), vol. 12085, pp. 449–461. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-47436-2_34

    Chapter  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by the European Union Horizon 2020 Research and Innovation programme (Grant #810775, Dragon); the Wageningen University and Research Investment Programme “Digital Twins” and AgResearch Strategic Science Investment Fund (SSIF) under “Emulation of pasture growth response to nitrogen application”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos Pylianidis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pylianidis, C., Snow, V., Holzworth, D., Bryant, J., Athanasiadis, I.N. (2021). Location-Specific vs Location-Agnostic Machine Learning Metamodels for Predicting Pasture Nitrogen Response Rate. In: Del Bimbo, A., et al. Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science(), vol 12666. Springer, Cham. https://doi.org/10.1007/978-3-030-68780-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68780-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68779-3

  • Online ISBN: 978-3-030-68780-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics