On the Adequacy of a Takagi–Sugeno–Kang Protocol as an Empirical Identification Tool for Sigmoidal Allometries in Geometrical Space | SpringerLink
Skip to main content

On the Adequacy of a Takagi–Sugeno–Kang Protocol as an Empirical Identification Tool for Sigmoidal Allometries in Geometrical Space

  • Chapter
  • First Online:
Fuzzy Logic Hybrid Extensions of Neural and Optimization Algorithms: Theory and Applications

Part of the book series: Studies in Computational Intelligence ((SCI,volume 940))

  • 442 Accesses

Abstract

Examining sigmoidal allometries in geometrical space can be carried away by direct nonlinear regression or generalized additive modeling approaches. Nevertheless, producing consistent estimates of breakpoints characterizing phases composing sigmoidal heterogeneity could be problematic. Here, we explain how the paradigm of weighted multiple–phase allometries embraced by the mixture structure of the total output of a first-order Takagi–Sugeno–Kang fuzzy model can carry on this task in a direct, intuitive and efficient way. Present calibration tasks relied on log-transformed amniote testes mass allometry data. The considered TSK fuzzy model approach not only offers a way to back the assumption that analyzed testes mass allometry is sigmoidal in geometrical space but beyond this, it provided meaningful estimates for transition among involved phases. Results confirm previously raised views on the superior capabilities of the addressed fuzzy approach to validating prior subjective knowledge in allometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 19447
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 24309
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 24309
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Akaike, H. 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6).

    Google Scholar 

  • Azeem, M.F., M. Hanmandlu, and N. Ahmad. 2000. Generalization of adaptive neuro-fuzzy inference systems. IEEE Transactions Neural Networks 11 (6): 1332–1346.

    Article  Google Scholar 

  • Beckman, R.J., and R.D. Cook. 1979. Testing for two-phase regressions. Technometrics 21: 65–69.

    Article  Google Scholar 

  • Bervian, G., N. Fontoura, and M. Haimovici. 2006. Statistical model of variable allometric growth: Otolith growth in Micropogonias furnieri (Actinopterygii, Sciaenidae). Journal of Fish Biology 68: 196–208.

    Article  Google Scholar 

  • Bezdek, J.C., and S.K. Pal. 1992. Fuzzy models for pattern recognition. New York: IEEE Press.

    Google Scholar 

  • Bull, W.B. 1975. Allometric Change of Landforms. Geological Society of America Bulletin 86: 1489.

    Article  Google Scholar 

  • Castro, J.R., O. Castillo, M.A. Sanchez, O. Mendoza, A. Rodríguez-Díaz, and P. Melin. 2016. Method for higher order polynomial sugeno fuzzy inference systems. Information Science 351: 76–89.

    Article  MATH  Google Scholar 

  • Champernowne, D.G. 1953. A model of income distribution. Economic Journal 63 (250): 318–351.

    Article  Google Scholar 

  • Chiu, S.L. 1994. Fuzzy model identification based on cluster estimation. Journal of Intelligent & Fuzzy Systems 2 (3): 267–278.

    Article  Google Scholar 

  • Coccia, M. 2018. New directions in measurement of economic growth, development and under development. Journal of Economics and Political Economy - JEPE 4 (4): 382–395.

    Google Scholar 

  • Cohn, D., S. Ghahramani, and M. Jordan. 1997. Active learning with mixture models. In Multiple Model Approaches to Modeling and Control, ed. R. Murray-Smith, and T. Johansen. London: Taylor and Francis.

    Google Scholar 

  • De Robertis, A., and K. Williams. 2008. Weight-length relationships in fisheries studies. The standard allometric model should be applied with caution. Transactions of the American Fisheries Society, 137(3): 707–719.

    Google Scholar 

  • Dechnik-Vázquez, Y.A., L. García-Barrios, N. Ramirez-Marcial, M. van Noordwijk, and A. Alayon-Gamboa. 2019. Assessment of browsed plants in a sub-tropical forest frontier by means of fuzzy inference. Journal of Environmental Management 236: 163–181.

    Article  Google Scholar 

  • Dreyer, O. 2001. Allometric scaling and central source systems. Physical Review Letters, 87(3)

    Google Scholar 

  • Echavarria-Heeras, H., C. Leal-Ramirez, E. Villa-Diharce, and A. Montesinos-Lopez. 2019a. Examination of the effects of curvature in geometrical space on accuracy of scaling derived projectinos of plant biomass units: Applicationsto the assessment of average leaf biomass in Elgrass Shoots. BioMed Research International, 3613679: 1–23.

    Google Scholar 

  • Echavarría-Heras, H., C. Leal-Ramírez, J.R. Castro-Rodríguez, E. Villa-Diharce, and O. Castillo. 2018. A takagi-sugeno-kang fuzzy model formalization of eelgrass leaf biomass allometry with application to the estimation of average biomass of leaves in shoots: Comparing the reproducibility strength of the present fuzzy and related crisp proxies. In Fuzzy logic augmentation of neural and optimization algorithms, ed. O. Castillo, P. Melin, and J. Kacprzyk, 329–362. Switzerland: Springer.

    Google Scholar 

  • Echavarria-Heras, H., C. Leal-Ramirez, E. Villa-Diharce, and N. Cazarez-Castro. 2018. On the suitability of an allometric proxy for nondestructive estimation of average leaf dry weight in eelgrass shoots I: Sensitivity analysis and examination of the influences of data quality, analysis method, and sample size on precision. Theoretical Biology and Medical Modelling 15: 4.

    Article  Google Scholar 

  • Echavarria-Heras, H., C. Leal-Ramirez, E. Villa-Diharce, and J.R. Castro-Rodríguez. 2019. A generalized model of complex allometry I: Formal setup, identification procedures and applications to non-destructive estimation of plant biomass units. Applied Science 9: 1–42.

    Article  Google Scholar 

  • Echavarria-Heras, H.A., J.R. Castro-Rodriguez, C. Leal-Ramirez, and E. Villa-Diharce. 2020. Assessment of a Takagi–Sugeno-Kang fuzzy model assembly for examination of polyphasic loglinear allometry. PeerJ 8: e8173.

    Article  Google Scholar 

  • El Naschie, M.S. 2004. A review of E-infinity theory and the mass spectrum of high energy particle physics. Chaos, Solitons & Fractals 19: 209–236.

    Article  MATH  Google Scholar 

  • Eleveld, D.J., J.H. Proost, H. Vereecke, A.R. Absalom, E. Olofsen, J. Vuyk, and M.M.R.F. Struys. 2017. An allometric model of remifentanil pharmacokinetics and pharmacodynamics. Anesthesiology 126 (6): 1005–1018.

    Article  Google Scholar 

  • Emlen, D. 1996. Artificial selection on horn length-body size allometry in the horned beetle onthophagus acuminatus (Coleoptera: Scarabaeidae). Evolution 50 (3): 1219–1230.

    Google Scholar 

  • Ertel, J.E., and E.B. Fowlkes. 1976. Some algorithms for linear spline and piecewise multiple linear regression. Journal of the American Statistical Association 71: 640–648.

    Article  MATH  Google Scholar 

  • Forbes, T.L., and G.R. López. 1989. Determination of critical periods in ontogenetic trajectories. Functional Ecology 3: 625–632.

    Article  Google Scholar 

  • Frankino, W.A., D.J. Emlen, and A.W. Shingleton. 2010. Experimental approaches to studying the evolution of animal form: The shape of things to come. In Experimental evolution: Concepts, methods, and applications of selection experiments, ed. T. Garland and M.R. Rose, 419–478. Berkeley: University of California Press.

    Google Scholar 

  • Gan, M.T., M. Hanmandlu, and A.H. Tan. 2005. From Gaussian mixture model to additive fuzzy systems. IEEE Transactions on Fuzzy Systems 13 (3): 303–316.

    Article  Google Scholar 

  • Glazier, D., M. Powell, and T. Deptola. 2013. Body-size scaling of metabolic rate in the trilobite Eldredgeops rana. Paleobiology 39 (1): 109–122.

    Article  Google Scholar 

  • Gould, S.J. 1966. Allometry and size in ontogeny and phylogeny. Biological Reviews 41: 587–640.

    Article  Google Scholar 

  • Huxley, J.S. 1932. Problems of relative growth. London: Methuen.

    Google Scholar 

  • Jang, J.S., C.T. Sun, and E. Mizutani. 1997. Neuro-Fuzzy and soft computing: A computational approach to learning and machine intel.

    Google Scholar 

  • Ji-Huan, H., and L. Jun-Fang. 2009. Allometric scaling laws in biology and physics. Chaos Solitons & Fractals, 41(4).

    Google Scholar 

  • Kalbfleisch, J.G. 1985. Probability and statistical inference, volume 2: Statistical inference, 2nd ed. Berlin: Spinger.

    Google Scholar 

  • Kolokotrones, T., V. Savage, E.J. Deeds, and W. Fontana. 2010. Curvature in metabolic scaling. Nature 464: 753–756.

    Article  Google Scholar 

  • Kwak, H.S., H.G. Im, and E.B. Shim. 2016. A model for allometric scaling of mammalian metabolism with ambient heat loss. Integrative Medicine Research 5 (1): 30–36.

    Article  Google Scholar 

  • Larsen, P.M. 1980. Industrial applications of fuzzy logic control. International Journal of Man-Machine Studies 12: 3–10.

    Article  Google Scholar 

  • Lemaître, J.F., C. Vanpé, F. Plard, and J.M Gaillard. 2014. The allometry between secondary sexual traits and body size is nonlinear among cervids. Biology Letters, 10.

    Google Scholar 

  • Lin, L.I.K. 1989. A concordance correlation coefficient to evaluate reproducibility. Biometrics 45: 255–268.

    Article  MATH  Google Scholar 

  • Liu, G., R. Li, J. He, W. Li, J. Lu, W. Long, P. Gao, G. Cai, and M. Tang. 2018. Scaling relation of earthquake seismic data. Physica A: Statistical Mechanics and Its Applications 492: 2092–2102.

    Article  Google Scholar 

  • Lovett, D., and D.L. Felder. 1989. Application of regression techniques to studies of relative growth in crustaceans. Journal of Crustacean Biology 9 (4): 529–539.

    Article  Google Scholar 

  • Lu, M., J.S. Caplan, J.D. Bakker, J.A. Langley, T.J. Ozdzer, B.G. Drake, and J.P. Megonigal. 2016. Allometry data and equations for coastal marsh plants. Ecology 97 (12): 3554.

    Article  Google Scholar 

  • MacLeod, C.D. 2010. Assessing the shape and topology of allometric relationships with body mass: A case study using testes mass allometry. Methods in Ecology and Evolution 1: 359–370.

    Article  Google Scholar 

  • MacLeod, C.D., and R.C. MacLeod. 2009. The relationship between body mass and relative investment in testes mass in amniotes and other vertebrates. Oikos 118: 903–916.

    Article  Google Scholar 

  • Macleod, C. 2014. Exploring and explaining complex allometric relationships: A case study on amniote testes mass allometry. Systems 2: 379–392.

    Article  Google Scholar 

  • Mahmood, I. 2013. Evaluation of sigmoidal maturation and allometric models: prediction of propofol clearance in neonates and infants. American Journal of Therapeutics 20 (1): 21–28.

    Google Scholar 

  • Mamdani, E.H. 1977. Application of fuzzy logic to approximate reasoning using linguistic systems. IEEE Transactions on Computers, C-26(12): 1182–1191.

    Google Scholar 

  • Maritan, A., R. Rigon, J.R. Banavar, and A. Rinaldo. 2002. Network allometry. Geophysical Research Letters, 29(11).

    Google Scholar 

  • Mayhew, T.M. 2009. A stereological perspective on placental morphology in normal and complicated pregnancies. Journal of Anatomy 215: 77–90.

    Article  Google Scholar 

  • McBride, G.B. 2005. A proposal for strength-of-agreement criteria for Lin’s concordance correlation coefficient. NIWA client report: HAM2005–062. Hamilton, New Zeeland: National Institute of Water & Atmospheric Research.

    Google Scholar 

  • Montesinos-López, A., E. Villa-Diharce, H. Echavarría-Heras, and C. Leal-Ramirez. 2018. Journal of Coastal Conservation 23: 71–91.

    Article  Google Scholar 

  • Moore, B.R., M. Page-Sharp, J.R. Stoney, K. Ilett, J.D. Jago, and K.T. Batty. 2011. Pharmacokinetics, pharmacodynamics, and allometric scaling of chloroquine in a murine malaria model. Antimicrobial Agents and Chemotherapy 55 (8): 3899–3907.

    Article  Google Scholar 

  • Muggeo, V.M. 2003. Estimating regression models with unknown break-points. Statistics in Medicine 22: 3055–3071.

    Article  Google Scholar 

  • Muggeo, V.M. 2008. Segmented: An R package to fit regression models with broken-line relationships. R News 8 (1): 20–25.

    Google Scholar 

  • Myhrvold, N.P. 2016. Dinosaur metabolism and the allometry of maximum growth rate. PLoS ONE 11 (11): e0163205.

    Article  Google Scholar 

  • Neukum, G., and B.A. Ivanov. 1994. Crater size distributions and impact probabilities on Earth from lunar, terrestrial planet, and asteroid cratering data. In Hazards due to comets and asteroids, ed. T. Gehrels, 359–416. Tucson, AZ: University of Arizona Press.

    Google Scholar 

  • Newman, M.E.J. 2007. Power laws, Pareto distributions and Zipf’s law. Contemporary Physics 46: 323–351.

    Article  Google Scholar 

  • Nijhout, H.F., D.E. Wheeler. 1996. Growth models of complex allometries in holometabolous insects. The American Naturalist, 148: 40–56.

    Google Scholar 

  • Ofstad, E.G., I. Herfindal, E.J. Solberg, and B.E. Sæther. 2016. Home ranges, habitat and body mass: Simple correlates of home range size in ungulates. Proceedings of the Royal Society B, 283.

    Google Scholar 

  • Packard, G.C. 2009. On the use of logarithmic transformations in allometric analyses. Journal of Theoretical Biology 257: 515–518.

    Article  MATH  Google Scholar 

  • Packard, G.C. 2012. Is non-loglinear allometry a statistical artifact? Biological Journal of the Linnaean Society 107 (4): 764–773.

    Article  Google Scholar 

  • Packard, G.C. 2013. Is logarithmic transformation necessary in allometry? Biological Journal of the Linnean Society 109: 476–486.

    Article  Google Scholar 

  • Packard, G.C. 2016. Relative growth by the elongated jaws of gars: A perspective on polyphasic loglinear allometry. Journal of Experimental Zoology (Molecular and Developmental Evolution) 326B: 168–175.

    Article  Google Scholar 

  • Packard, G.C. 2017a. Misconceptions about logarithmic transformation and the traditional allometric method. Zoology 123: 115–120.

    Article  Google Scholar 

  • Packard, G.C. 2017b. The essential role for graphs in allometric analysis. Biological Journal of the Linnaean Society 120: 468–473.

    Google Scholar 

  • Packard, G.C., and G.F. Birchard. 2008. Traditional allometric analysis fails to provide a valid predictive model for mammalian metabolic rates. Journal of Experimental Biology 211: 3581–3587.

    Article  Google Scholar 

  • Packard, G.C, and J. Huxley. 2012. Uca pugnax and the allometric method. Journal of Experimental Biology, 215.

    Google Scholar 

  • Palestrini, C., A. Rolando, and P. Laiolo. 2000. Allometric relationships and character evolution in Onthophagus taurus (Coleoptera: Scarabaeidae). Canadian Journal of Zoology 78: 1199–1206.

    Article  Google Scholar 

  • Paul, R.A., C.D. Smyser, C.E. Rogers, I. English, M. Wallendorf, D. Alexopoulos, and T.E. Inder. 2014. An allometric scaling relationship in the brain of preterm infants. Annals of Clinical and Translational Neurology 1 (11): 933–937.

    Article  Google Scholar 

  • Pouliquen, O. 1999. Scaling laws in granular flows down rough inclined planes. Physics of Fluids 11 (3): 542–548.

    Article  MathSciNet  MATH  Google Scholar 

  • Ramírez-Ramírez, G., L. Ramírez-Avilés, F.J. Solorio-Sánchez, J.A. Navarro-Alberto, and J.M. Dupuy-Rada. 2019. Shifts in tree allometry in a tropical dry forest: Implications for above-ground biomass estimation. Botanical Sciences 97 (2): 167–179.

    Article  Google Scholar 

  • Rasmussen, T.D., and C.L. Tan. 1992. The allometry of behavioral development: Fitting sigmoid curves to ontogenetic data for use in interspecific allometric analyses. Journal of Human Evolution 23 (2): 159–181.

    Article  Google Scholar 

  • Rodríguez, J.M., E. Angón, MA. González, J. Perea, C. Barba, A. García. 2017. Allometric relationship and growth models of juveniles of Cichlasoma festae (Perciforme: Cichlidae), a freshwater species native in Ecuador. Revista de Biología Tropical, 65(3): 1185–1193.

    Google Scholar 

  • Samaniego, H., and M.E. Moses. 2008. Cities as organisms: Allometric scaling of urban road networks. Journal of Transport and Land Use 1: 21–39.

    Article  Google Scholar 

  • Savage, V.M., J.F. Gillooly, W.H. Woodruff, G.B. West, and A.P. Allen. 2004. The predominance of quarter-power scaling in biology. Functional Ecology 18: 257–282.

    Article  Google Scholar 

  • Shingleton, A. 2010. Allometry: The study of biological scaling. Nature Education Knowledge 3 (10): 2.

    Google Scholar 

  • Snell, O. 1892. Die Abhängigkeit des Hirngewichts von dem Körpergewicht und den geistigen Fähigkeiten. Arch Psychiatr 23 (2): 436–446.

    Article  Google Scholar 

  • Solana-Arellano, M.E., H.A. Echavarría-Heras, C. Leal-Ramírez, and K.S. Lee. 2014. The effect of parameter variability in the allometric projection of leaf growth rates for eelgrass (Zostera marina L.). Latin American Journal of Aquatic Research, 42(5): 1099–1108.

    Google Scholar 

  • Sommerton, D.A. 1980. A computer technique for estimating the size at sexual maturity in crabs. Canadian Journal of Fisheries and Aquatic Sciences 37: 1488–1494.

    Article  Google Scholar 

  • Strauss, R.E., and J.S. Huxley. 1993. The study of allometry since Huxley. In: Problems of relative growth, new edition, ed. D.H. Thompson. Baltimore: Johns Hopkins University Press.

    Google Scholar 

  • Sugeno, M., and G.T. Kang. 1988. Structure identification of fuzzy model. Fuzzy Sets and Systems 28: 15–33.

    Article  MathSciNet  MATH  Google Scholar 

  • Sutherland, G.D., A.S. Harestad, K. Price, and K. Lertzman. 2000. Scaling of natal dispersal distances in terrestrial birds and mammals. Conservation Ecology 4: 16.

    Article  Google Scholar 

  • Takagi, T., and M. Sugeno. 1985. Fuzzy identifications of systems and its applications to modeling and control. IEE Transactions on Systems, MAN and Cybernetics 15 (1): 116–132.

    Article  MATH  Google Scholar 

  • Thompson, D'Arcy W. 1992. On growth and form (Canto ed.). Cambridge University Press.

    Google Scholar 

  • Tidière, M., J.F. Lemaître, C. Pélabon, O. Gimenez, and J.M. Gaillard, 2017. Evolutionary allometry reveals a shift in selection pressure on male horn size. Journal of Evolutionary Biology, 30.

    Google Scholar 

  • Tsuboi, M.W., B. Van Der, B.T. Kopperud, J. Erritzøe, K.L. Voje, A. Kotrschal, K.E. Yopak, S.P. Collin, A.N. Iwaniuk, and N. Kolm. 2018. Breakdown of brain–body allometry and the encephalization of birds and mammals. Nature Ecology and Evolution 2: 1492–1500.

    Article  Google Scholar 

  • Wang, L.-X., and J.M. Mendel. 1992. Fuzzy basis functions, universal approximation, and orthogonal least-squares learning. IEEE Transactions Neural Networks, 3(5): 807–814.

    Google Scholar 

  • Wang, C., K. Allegaert, M.Y.M. Peeters, D. Tibboel, M. Danhof, and C.A.J. Knibbe. 2014. The allometric exponent for scaling clearance varies with age: a study on seven propofol datasets ranging from preterm neonates to adults. British Journal of Clinical Pharmacology, 77(1).

    Google Scholar 

  • West, G.B., and J.H. Brown. 2005. The origin of allometric scaling laws in biology from genomes to ecosystems: Towards a quantitative unifying theory of biological structure and organization. Journal of Experimental Biology 208: 1575–1592.

    Article  Google Scholar 

  • William, J. 1979. Coffey allometric growth in urban and regional social-economic systems. Canadian Journal of Regional Science II (1): 50–65.

    Google Scholar 

  • Wolinsky, M.A., D.A. Edmonds, J. Martin, and C. Paola, 2010. Delta allometry: Growth laws for river deltas. Geophysical Research Letters, 37.

    Google Scholar 

  • Ying, H. 1998. General SISO Takagi-Sugeno fuzzy systems with linear rule consequent are universal approximators. IEEE Transactions on Fuzzy Systems 6 (4): 582–587.

    Article  Google Scholar 

  • Zadeh, L.A. 1965. Fuzzy sets. Information and Control 8: 338–353.

    Article  MathSciNet  MATH  Google Scholar 

  • Zeng, W.S., and S.Z. Tang. 2011a. Goodness evaluation and precision analysis of tree biomass equations. Scientia Silvae Sinicae 47: 106–113.

    Google Scholar 

  • Zeng, W.S., and S.Z. Tang. 2011b. Bias correction in logarithmic regression and comparison with weighted regression for nonlinear models. Nature Precedings 24: 137–143.

    Google Scholar 

  • Zeng, W.S., L.J. Zhang, X.Y. Chen, Z.C. Cheng, K.X. Ma, and L. ZhiHua. 2017. Construction of compatible and additive individual-tree biomass models for Pinus tabulaeformis in China. Canadian Journal of Forest Research 47: 467–475.

    Article  Google Scholar 

  • Zeng, W.S., H.R. Duo, X.D. Lei, X.Y. Chen, X.J. Wang, Y. Pu, and W.T. Zou. 2017. Individual tree biomass equations and growth models sensitive to climate variables for Larix spp China. European Journal of Forest Research 136 (2): 233–249.

    Article  Google Scholar 

  • Zimmerman, H.J. 1991. Fuzzy set theory and its applications, 2nd ed. Boston MA: Kluwer.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Héctor Echavarría-Heras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Leal-Ramírez, C., Echavarría-Heras, H. (2021). On the Adequacy of a Takagi–Sugeno–Kang Protocol as an Empirical Identification Tool for Sigmoidal Allometries in Geometrical Space. In: Castillo, O., Melin, P. (eds) Fuzzy Logic Hybrid Extensions of Neural and Optimization Algorithms: Theory and Applications. Studies in Computational Intelligence, vol 940. Springer, Cham. https://doi.org/10.1007/978-3-030-68776-2_19

Download citation

Publish with us

Policies and ethics