Search and Explore Strategies for Interactive Analysis of Real-Life Image Collections with Unknown and Unique Categories | SpringerLink
Skip to main content

Search and Explore Strategies for Interactive Analysis of Real-Life Image Collections with Unknown and Unique Categories

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2021)

Abstract

Many real-life image collections contain image categories that are unique to that specific image collection and have not been seen before by any human expert analyst nor by a machine. This prevents supervised machine learning to be effective and makes evaluation of such an image collection inefficient. Real-life collections ask for a multimedia analytics solution where the expert performs search and explores the image collection, supported by machine learning algorithms. We propose a method that covers both exploration and search strategies for such complex image collections. Several strategies are evaluated through an artificial user model. Two user studies were performed with experts and students respectively to validate the proposed method. As evaluation of such a method can only be done properly in a real-life application, the proposed method is applied on the MH17 airplane crash photo database on which we have expert knowledge. To show that the proposed method also helps with other image collections an image collection created with the Open Image Database is used. We show that by combining image features extracted with a convolutional neural network pretrained on ImageNet 1k, intelligent use of clustering, a well chosen strategy and expert knowledge, an image collection such as the MH17 airplane crash photo database can be interactively structured into relevant dynamically generated categories, allowing the user to analyse an image collection efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Demonstration video on https://youtu.be/73-ExDd2lco, code and application on https://tinyurl.com/imexMMM.

References

  1. Babenko, A., Slesarev, A., Chigorin, A., Lempitsky, V.: Neural codes for image retrieval. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 584–599. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_38

    Chapter  Google Scholar 

  2. Barthel, K.U., Hezel, N.: Visually exploring millions of images using image maps and graphs, pp. 251–275. John Wiley and Sons Inc. (2019)

    Google Scholar 

  3. Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. In: European Conference on Computer Vision (2018)

    Google Scholar 

  4. Dutch Safety Board: Investigation crash mh17, 17 July 2014, October 2015

    Google Scholar 

  5. Fei-Fei, L., Fergus, R., Perona, P.: One-shot learning of object categories. IEEE Trans. Pattern Anal. Mach. Intell. 28, 594–611 (2006)

    Article  Google Scholar 

  6. Forest, F., Lebbah, M., Azzag, H., Lacaille, J.: Deep embedded SOM: joint representation learning and self-organization. In: ESANN 2019 - Proceedings, April 2019

    Google Scholar 

  7. Gasser, R., Rossetto, L., Schuldt, H.: Multimodal multimedia retrieval with Vitrivr. In: Proceedings of the 2019 on International Conference on Multimedia Retrieval, ICMR 2019, pp. 391–394. Association for Computing Machinery, New York (2019)

    Google Scholar 

  8. Guo, X., Liu, X., Zhu, E., Yin, J.: Deep clustering with convolutional autoencoders. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, E.S. (eds.) ICONIP 2017. LNCS, vol. 10635, pp. 373–382. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70096-0_39

    Chapter  Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, June 2016

    Google Scholar 

  10. Hezel, N., Barthel, K.U., Jung, K.: ImageX - explore and search local/private images. In: Schoeffmann, K., et al. (eds.) MMM 2018. LNCS, vol. 10705, pp. 372–376. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73600-6_35

    Chapter  Google Scholar 

  11. Krasin, I., et al.: OpenImages: a public dataset for large-scale multi-label and multi-class image classification (2017). https://github.com/openimages

  12. Kratochvíl, M., Veselý, P., Mejzlík, F., Lokoč, J.: SOM-hunter: video browsing with relevance-to-SOM feedback loop. In: Ro, Y.M., et al. (eds.) MMM 2020. LNCS, vol. 11962, pp. 790–795. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37734-2_71

    Chapter  Google Scholar 

  13. Leibetseder, A., et al.: LifeXplore at the lifelog search challenge 2019. In: Proceedings of the ACM Workshop on Lifelog Search Challenge, pp. 13–17. Association for Computing Machinery, New York (2019)

    Google Scholar 

  14. Liu, C., et al.: Progressive neural architecture search. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 19–35. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_2

    Chapter  Google Scholar 

  15. McInnes, L., Healy, J., Melville, J.: UMAP: uniform manifold approximation and projection for dimension reduction (2018)

    Google Scholar 

  16. de Rooij, O., van Wijk, J.J., Worring, M.: MediaTable: interactive categorization of multimedia collections. IEEE Comput. Graph. Appl. 30(5), 42–51 (2010)

    Article  Google Scholar 

  17. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  18. Schoeffmann, K.: Video browser showdown 2012–2019: a review. In: 2019 International Conference on Content-Based Multimedia Indexing (CBMI), pp. 1–4 (2019)

    Google Scholar 

  19. Settles, B.: Active learning literature survey. Computer Sciences Technical report 1648, University of Wisconsin-Madison (2009)

    Google Scholar 

  20. Sun, Q., Liu, Y., Chua, T.S., Schiele, B.: Meta-transfer learning for few-shot learning. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019

    Google Scholar 

  21. Touvron, H., Vedaldi, A., Douze, M., Jégou, H.: Fixing the train-test resolution discrepancy. In: Advances in Neural Information Processing Systems (NeurIPS) (2019)

    Google Scholar 

  22. Wang, Y., Chao, W.L., Weinberger, K.Q., van der Maaten, L.: SimpleShot: revisiting nearest-neighbor classification for few-shot learning (2019)

    Google Scholar 

  23. Worring, M., Engl, A., Smeria, C.: A multimedia analytics framework for browsing image collections in digital forensics. In: Proceedings of the 20th ACM International Conference on Multimedia, MM 2012, pp. 289–298. ACM, New York (2012)

    Google Scholar 

  24. Yan, M.: Adaptive learning knowledge networks for few-shot learning. IEEE Access 7, 119041–119051 (2019)

    Article  Google Scholar 

  25. Yang, G., Liu, J., Xu, J., Li, X.: Dissimilarity representation learning for generalized zero-shot recognition. In: Proceedings of the 26th ACM International Conference on Multimedia, MM 2018, pp. 2032–2039. Association for Computing Machinery, New York (2018)

    Google Scholar 

  26. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? In: Proceedings of the 27th International Conference on Neural Information Processing Systems, NIPS 2014, vol. 2. pp. 3320–3328. MIT Press, Cambridge (2014)

    Google Scholar 

  27. Zahálka, J., Worring, M.: Towards interactive, intelligent, and integrated multimedia analytics. In: 2014 IEEE Conference on Visual Analytics Science and Technology (VAST), pp. 3–12, October 2014

    Google Scholar 

  28. Zahálka, J., Rudinac, S., Worring, M.: Analytic quality: evaluation of performance and insight in multimedia collection analysis. In: Proceedings of the 23rd ACM International Conference on Multimedia, MM 2015, pp. 231–240. ACM, New York (2015)

    Google Scholar 

  29. Zhang, Z., Saligrama, V.: Zero-shot learning via joint latent similarity embedding. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6034–6042, June 2016

    Google Scholar 

  30. Zhou, X.S., Huang, T.S.: Relevance feedback in image retrieval: a comprehensive review. Multimedia Syst. 8(6), 536–544 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Floris Gisolf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gisolf, F., Geradts, Z., Worring, M. (2021). Search and Explore Strategies for Interactive Analysis of Real-Life Image Collections with Unknown and Unique Categories. In: Lokoč, J., et al. MultiMedia Modeling. MMM 2021. Lecture Notes in Computer Science(), vol 12573. Springer, Cham. https://doi.org/10.1007/978-3-030-67835-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67835-7_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67834-0

  • Online ISBN: 978-3-030-67835-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics