Autonomously Improving Systems in Industry: A Systematic Literature Review | SpringerLink
Skip to main content

Autonomously Improving Systems in Industry: A Systematic Literature Review

  • Conference paper
  • First Online:
Software Business (ICSOB 2020)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 407))

Included in the following conference series:

  • 1158 Accesses

Abstract

A significant amount of research effort is put into studying machine learning (ML) and deep learning (DL) technologies. Real-world ML applications help companies to improve products and automate tasks such as classification, image recognition and automation. However, a traditional “fixed” approach where the system is frozen before deployment leads to a sub-optimal system performance. Systems autonomously experimenting with and improving their own behavior and performance could improve business outcomes but we need to know how this could actually work in practice. While there is some research on autonomously improving systems, the focus on the concepts and theoretical algorithms. However, less research is focused on empirical industry validation of the proposed theory. Empirical validations are usually done through simulations or by using synthetic or manually alteration of datasets. The contribution of this paper is twofold. First, we conduct a systematic literature review in which we focus on papers describing industrial deployments of autonomously improving systems and their real-world applications. Secondly, we identify open research questions and derive a model that classifies the level of autonomy based on our findings in the literature review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Benhamou, P.Y., et al.: Closed-loop insulin delivery in adults with type 1 diabetes in real-life conditions: a 12-week multicentre, open-label randomised controlled crossover trial. Lancet Digit. Health 1(1), e17–e25 (2019)

    Article  MathSciNet  Google Scholar 

  2. Chess, D.M., Kephart, J.O.: The vision of autonomic computing. Computer 36(1), 41–50 (2003)

    Article  MathSciNet  Google Scholar 

  3. IBM: An architectural blueprint for autonomic computing. IBM White Pap. 36(June), 34 (2006). https://doi.org/10.1021/am900608j. ISSN 19448244

  4. Olsson, H.H., Bosch, J.: Post-deployment data collection in software-intensive embedded products. Contin. Softw. Eng. 9783319112, 143–154 (2014). https://doi.org/10.1007/978-3-319-11283-1-12

    Article  Google Scholar 

  5. Fabijan, A., Dmitriev, P., McFarland, C., Vermeer, L., Olsson, H.H., Bosch, J.: Experimentation growth: evolving trustworthy A/B testing capabilities in online software companies. J. Softw. Evol. Process 30(12), 1–23 (2018). https://doi.org/10.1002/smr.2113

    Article  Google Scholar 

  6. Tamburrelli, G., Margara, A.: Towards automated A/B testing. In: Le Goues, C., Yoo, S. (eds.) SSBSE 2014. LNCS, vol. 8636, pp. 184–198. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09940-8_13

    Chapter  Google Scholar 

  7. Mattos, D.I., Bosch, J., Olsson, H.H.: Mult-armed bandits in the wild: pitfalls and strategies in online experiments. Inf. Softw. Technol. 113(April 2018), 68–81 (2019)

    Article  Google Scholar 

  8. Koulouriotis, D.E., Xanthopoulos, A.: Reinforcement learning and evolutionary algorithms for non-stationary multi-armed bandit problems. Appl. Math. Comput. 196(2), 913–922 (2008). https://doi.org/10.1016/j.amc.2007.07.043. ISSN 00963003

    Article  MATH  Google Scholar 

  9. Krawczyk, B., Minku, L.L., Gama, J., Stefanowski, J., Woźniak, M.: Ensemble learning for data stream analysis: a survey. Inf. Fusion 37, 132–156 (2017). https://doi.org/10.1016/j.inffus.2017.02.004. ISSN 15662535

    Article  Google Scholar 

  10. Parisi, G.I., Kemker, R., Part, J.L., Kanan, C., Wermter, S.: Continual lifelong learning with neural networks: a review. Neural Netw. 113, 54–71 (2019). https://doi.org/10.1016/j.neunet.2019.01.012. ISSN 18792782

    Article  Google Scholar 

  11. Dulac-Arnold, G., Mankowitz, D., Hester, T.: Challenges of Real-World Reinforcement Learning (2019). http://arxiv.org/abs/1904.12901

  12. Lu, J., Liu, A., Dong, F., Feng, G., Gama, J., Zhang, G.: Learning under concept drift: a review. IEEE Trans. Knowl. Data Eng. 31(12), 2346–2363 (2019). https://doi.org/10.1109/TKDE.2018.2876857. ISSN 15582191

    Article  Google Scholar 

  13. Kohavi, R., Longbotham, R., Sommerfield, D., Henne, R.M.: Controlled experiments on the web: survey and practical guide. Data Min. Knowl. Disc. 18(1), 140–181 (2009). https://doi.org/10.1007/s10618-008-0114-1. ISSN 13845810

    Article  MathSciNet  Google Scholar 

  14. Mattos, D.I., Bosch, J., Holmström Olsson, H.: ACE: easy deployment of field optimization experiments. In: Bures, T., Duchien, L., Inverardi, P. (eds.) ECSA 2019. LNCS, vol. 11681, pp. 264–279. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29983-5_18

    Chapter  Google Scholar 

  15. Schermann, G., Cito, J., Leitner, P., Zdun, U., Gall, H.C.: We’re doing it live: a multi-method empirical study on continuous experimentation. Inf. Softw. Technol. 99(February), 41–57 (2018)

    Article  Google Scholar 

  16. Kohavi, R., Longbotham, R.: Online controlled experiments and A/B testing. In: Sammut, C., Webb, G.I. (eds.) Encyclopedia of Machine Learning and Data Mining. Springer, Boston (2017). https://doi.org/10.1007/978-1-4899-7687-1_891

    Chapter  Google Scholar 

  17. Burtini, G., Loeppky, J., Lawrence, R.: A Survey of Online Experiment Design with the Stochastic Multi-Armed Bandit, pp. 1–49 (2015)

    Google Scholar 

  18. Thrun, S., Mitchell, T.M.: Lifelong robot learning. Robot. Auton. Syst. 15(1–2), 25–46 (1995). https://doi.org/10.1016/0921-8890(95)00004-Y. ISSN 09218890

    Article  Google Scholar 

  19. De Lange, M., et al.: Continual learning: A comparative study on how to defy forgetting in classification tasks, pp. 1–23 (2019)

    Google Scholar 

  20. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, December 2016, pp. 779–788 (2016). https://doi.org/10.1109/CVPR.2016.91. ISSN 10636919

  21. Howard, A.G., et al.: MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications (2017)

    Google Scholar 

  22. Diethe, T., Borchert, T., Thereska, E., Balle, B., Lawrence, N.: Continual Learning in Practice, (Nips) (2019). http://arxiv.org/abs/1903.05202

  23. Song, H., Triguero, I., Özcan, E.: A review on the self and dual interactions between machine learning and optimisation. Prog. Artif. Intell. 8(2), 143–165 (2019). https://doi.org/10.1007/s13748-019-00185-z

    Article  Google Scholar 

  24. Grua, E.M., Malavolta, I., Lago, P.: Self-adaptation in mobile apps: a systematic literature study. In: ICSE Workshop on Software Engineering for Adaptive and Self-Managing Systems, May 2019, pp. 51–62 (2019). https://doi.org/10.1109/SEAMS.2019.00016. ISSN 21567891

  25. Muccini, H., Weyns, D.: Self-adaptation for cyber-physical systems: a systematic literature review. In: 2016 IEEE/ACM 11th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS), pp. 75–81 (2016). https://doi.org/10.1109/SEAMS.2016.016

  26. Gama, J., Zliobaite, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift adaptation. ACM Comput. Surv. 46(4), 1–37 (2014). https://doi.org/10.1145/2523813. ISSN 15577341

    Article  MATH  Google Scholar 

  27. Kitchenham, B.: Procedures for Performing Systematic Reviews, Keele University 33, 1–26, Keele, UK (2004)

    Google Scholar 

  28. Kroll, A.: Drivers of performance information use: systematic literature review and directions for future research. Public Perform. Manage. Rev. 38(3), 459–486 (2015). https://doi.org/10.1080/15309576.2015.1006469. ISSN 15579271

    Article  Google Scholar 

  29. Gaudette, M., Roult, R., Lefebvre, S.: Winter Olympic games, cities, and tourism: a systematic literature review in this domain. J. Sport Tour. 21(4), 287–313 (2017). https://doi.org/10.1080/14775085.2017.1389298. ISSN 10295399

    Article  Google Scholar 

  30. Fischer, K., Ekener-Petersen, E., Rydhmer, L., Björnberg, K.E.: Social impacts of GM crops in agriculture: a systematic literature review. Sustain. (Switz.) 7(7), 8598–8620 (2015). https://doi.org/10.3390/su7078598. ISSN 20711050

    Article  Google Scholar 

  31. Kasten, E.P., McKinley, P.K.: MESO: supporting online decision making in autonomic computing systems. IEEE Trans. Knowl. Data Eng. 19(4), 485–499 (2007). https://doi.org/10.1109/TKDE.2007.1000. ISSN 10414347

    Article  Google Scholar 

  32. Minku, L.L., White, A.P., Yao, X.: The impact of diversity on online ensemble learning in the presence of concept drift. IEEE Trans. Knowl. Data Eng. 22(5), 730–742 (2010). https://doi.org/10.1109/TKDE.2009.156. ISSN 10414347

    Article  Google Scholar 

  33. Esfahani, N., Elkhodary, A., Malek, S.: A learning-based framework for engineering feature-oriented self-adaptive software systems. IEEE Trans. Softw. Eng. 39(11), 1467–1493 (2013). https://doi.org/10.1109/TSE.2013.37. ISSN 00985589

    Article  Google Scholar 

  34. Moreira-Matias, L., Gama, J., Mendes-Moreira, J.: Concept neurons – handling drift issues for real-time industrial data mining. In: Berendt, B., et al. (eds.) ECML PKDD 2016, Part III. LNCS (LNAI), vol. 9853, pp. 96–111. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46131-1_18

    Chapter  Google Scholar 

  35. Filho, R.R., Porter, B.: Defining emergent software using continuous self-assembly, perception, and learning. In: ACM Transactions on Autonomous and Adaptive Systems, vol. 12. Association for Computing Machinery (2017). https://doi.org/10.1145/3092691

  36. Mayer, C., Mayer, R., Abdo, M.: Grand challenge: StreamLearner - distributed incremental machine learning on event streams. In: DEBS 2017 - Proceedings of the 11th ACM International Conference on Distributed Event-Based Systems, pp. 298–303. Association for Computing Machinery Inc. (2017). https://doi.org/10.1145/3093742.3095103. ISBN 9781450350655

  37. Carvajal Soto, J.A., Tavakolizadeh, F., Gyulai, D.: An online machine learning framework for early detection of product failures in an industry 4.0 context. Int. J. Comput. Integr. Manuf. 32(4–5), 452–465 (2019)

    Article  Google Scholar 

  38. del Campo, I., Martínez, V., Echanobe, J., Asua, E., Finker, R., Basterretxea, K.: A versatile hardware/software platform for personalized driver assistance based on online sequential extreme learning machines. Neural Comput. Appl. 31(12), 8871–8886 (2019). https://doi.org/10.1007/s00521-019-04386-4

    Article  Google Scholar 

  39. Ren, S., et al.: Selection-based resampling ensemble algorithm for nonstationary imbalanced stream data learning. Knowl.-Based Syst. 163, 705–722 (2019)

    Article  Google Scholar 

  40. Mounce, S.R., Boxall, J.B.: Implementation of an on-line artificial intelligence district meter area flow meter data analysis system for abnormality detection: a case study. Water Sci. Technol. Water Supply 10(3), 437–444 (2010). https://doi.org/10.2166/ws.2010.697. ISSN 16069749

    Article  Google Scholar 

  41. Schölkopf, B., Janzing, D., Peters, J., Sgouritsa, E., Zhang, K., Mooij, J.: On causal and anticausal learning.In: Proceedings of the 29th International Conference on Machine Learning, ICML 2012, vol. 2, pp. 1255–1262 (2012)

    Google Scholar 

  42. Sutton, J.R., Mahajan, R., Akbilgic, O., Kamaleswaran, R.: PhysOnline: an open source machine learning pipeline for real-time analysis of streaming physiological waveform. IEEE J. Biomed. Health Inform. 23(1), 59–65 (2019)

    Article  Google Scholar 

  43. Artikis, A., et al.: Industry paper: a prototype for credit card fraud management. In: DEBS 2017 - Proceedings of the 11th ACM International Conference on Distributed Event-Based Systems, pp. 249–260 (2017). https://doi.org/10.1145/3093742.3093912

  44. Appelt, D., Nguyen, C.D., Panichella, A., Briand, L.C.: A machine-learning-driven evolutionary approach for testing web application firewalls. IEEE Trans. Reliab. 67(3), 733–757 (2018). https://doi.org/10.1109/TR.2018.2805763. ISSN 00189529

    Article  Google Scholar 

  45. Kabir, M.A., Keung, J.W., Benniny, K.E., Zhang, M.: Assessing the significant impact of concept drift in software defect prediction. In: Proceedings - International Computer Software and Applications Conference, vol. 1, pp. 53–58 (2019). https://doi.org/10.1109/COMPSAC.2019.00017. ISSN 07303157

  46. Washha, M., Qaroush, A., Mezghani, M., Sedes, F.: Unsupervised collective-based framework for dynamic retraining of supervised real-time spam tweets detection model. Expert Syst. Appl. 135, 129–152 (2019)

    Article  Google Scholar 

  47. Belluf, T., Xavier, L., Giglio, R.: Case study on the business value impact of personalized recommendations on a large online retailer. In: RecSys’12 - Proceedings of the 6th ACM Conference on Recommender Systems (2012)

    Google Scholar 

  48. Fabijan, A., Dmitriev, P., Olsson, H.H., Bosch, J.: The benefits of controlled experimentation at scale. In: Proceedings - 43rd Euromicro Conference on Software Engineering and Advanced Applications, SEAA 2017 (2017)

    Google Scholar 

  49. Fabijan, A., Dmitriev, P., Olsson, H.H., Bosch, J.: Effective online controlled experiment analysis at large scale. In: Proceedings - 44th Euromicro Conference on Software Engineering and Advanced Applications, SEAA 2018 (2018)

    Google Scholar 

  50. Fabijan, A., Dmitriev, P., Olsson, H.H., Bosch, J.: The online controlled experiment lifecycle. IEEE Softw. PP(1), 1 (2018)

    Google Scholar 

  51. Filho, R., Porter, B.: Defining emergent software using continuous self-assembly, perception, and learning. ACM Trans. Auton. Adapt. Syst. 12(3), 1–25 (2017)

    Article  Google Scholar 

  52. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Article  Google Scholar 

  53. Weyns, D.: Software engineering of self-adaptive systems: an organised tour and future challenges. In: Handbook of Software Engineering, pp. 1–41 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Bosch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Green, R., Bosch, J., Holmström Olsson, H. (2021). Autonomously Improving Systems in Industry: A Systematic Literature Review. In: Klotins, E., Wnuk, K. (eds) Software Business. ICSOB 2020. Lecture Notes in Business Information Processing, vol 407. Springer, Cham. https://doi.org/10.1007/978-3-030-67292-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67292-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67291-1

  • Online ISBN: 978-3-030-67292-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics