Abstract
A significant amount of research effort is put into studying machine learning (ML) and deep learning (DL) technologies. Real-world ML applications help companies to improve products and automate tasks such as classification, image recognition and automation. However, a traditional “fixed” approach where the system is frozen before deployment leads to a sub-optimal system performance. Systems autonomously experimenting with and improving their own behavior and performance could improve business outcomes but we need to know how this could actually work in practice. While there is some research on autonomously improving systems, the focus on the concepts and theoretical algorithms. However, less research is focused on empirical industry validation of the proposed theory. Empirical validations are usually done through simulations or by using synthetic or manually alteration of datasets. The contribution of this paper is twofold. First, we conduct a systematic literature review in which we focus on papers describing industrial deployments of autonomously improving systems and their real-world applications. Secondly, we identify open research questions and derive a model that classifies the level of autonomy based on our findings in the literature review.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Benhamou, P.Y., et al.: Closed-loop insulin delivery in adults with type 1 diabetes in real-life conditions: a 12-week multicentre, open-label randomised controlled crossover trial. Lancet Digit. Health 1(1), e17–e25 (2019)
Chess, D.M., Kephart, J.O.: The vision of autonomic computing. Computer 36(1), 41–50 (2003)
IBM: An architectural blueprint for autonomic computing. IBM White Pap. 36(June), 34 (2006). https://doi.org/10.1021/am900608j. ISSN 19448244
Olsson, H.H., Bosch, J.: Post-deployment data collection in software-intensive embedded products. Contin. Softw. Eng. 9783319112, 143–154 (2014). https://doi.org/10.1007/978-3-319-11283-1-12
Fabijan, A., Dmitriev, P., McFarland, C., Vermeer, L., Olsson, H.H., Bosch, J.: Experimentation growth: evolving trustworthy A/B testing capabilities in online software companies. J. Softw. Evol. Process 30(12), 1–23 (2018). https://doi.org/10.1002/smr.2113
Tamburrelli, G., Margara, A.: Towards automated A/B testing. In: Le Goues, C., Yoo, S. (eds.) SSBSE 2014. LNCS, vol. 8636, pp. 184–198. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09940-8_13
Mattos, D.I., Bosch, J., Olsson, H.H.: Mult-armed bandits in the wild: pitfalls and strategies in online experiments. Inf. Softw. Technol. 113(April 2018), 68–81 (2019)
Koulouriotis, D.E., Xanthopoulos, A.: Reinforcement learning and evolutionary algorithms for non-stationary multi-armed bandit problems. Appl. Math. Comput. 196(2), 913–922 (2008). https://doi.org/10.1016/j.amc.2007.07.043. ISSN 00963003
Krawczyk, B., Minku, L.L., Gama, J., Stefanowski, J., Woźniak, M.: Ensemble learning for data stream analysis: a survey. Inf. Fusion 37, 132–156 (2017). https://doi.org/10.1016/j.inffus.2017.02.004. ISSN 15662535
Parisi, G.I., Kemker, R., Part, J.L., Kanan, C., Wermter, S.: Continual lifelong learning with neural networks: a review. Neural Netw. 113, 54–71 (2019). https://doi.org/10.1016/j.neunet.2019.01.012. ISSN 18792782
Dulac-Arnold, G., Mankowitz, D., Hester, T.: Challenges of Real-World Reinforcement Learning (2019). http://arxiv.org/abs/1904.12901
Lu, J., Liu, A., Dong, F., Feng, G., Gama, J., Zhang, G.: Learning under concept drift: a review. IEEE Trans. Knowl. Data Eng. 31(12), 2346–2363 (2019). https://doi.org/10.1109/TKDE.2018.2876857. ISSN 15582191
Kohavi, R., Longbotham, R., Sommerfield, D., Henne, R.M.: Controlled experiments on the web: survey and practical guide. Data Min. Knowl. Disc. 18(1), 140–181 (2009). https://doi.org/10.1007/s10618-008-0114-1. ISSN 13845810
Mattos, D.I., Bosch, J., Holmström Olsson, H.: ACE: easy deployment of field optimization experiments. In: Bures, T., Duchien, L., Inverardi, P. (eds.) ECSA 2019. LNCS, vol. 11681, pp. 264–279. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29983-5_18
Schermann, G., Cito, J., Leitner, P., Zdun, U., Gall, H.C.: We’re doing it live: a multi-method empirical study on continuous experimentation. Inf. Softw. Technol. 99(February), 41–57 (2018)
Kohavi, R., Longbotham, R.: Online controlled experiments and A/B testing. In: Sammut, C., Webb, G.I. (eds.) Encyclopedia of Machine Learning and Data Mining. Springer, Boston (2017). https://doi.org/10.1007/978-1-4899-7687-1_891
Burtini, G., Loeppky, J., Lawrence, R.: A Survey of Online Experiment Design with the Stochastic Multi-Armed Bandit, pp. 1–49 (2015)
Thrun, S., Mitchell, T.M.: Lifelong robot learning. Robot. Auton. Syst. 15(1–2), 25–46 (1995). https://doi.org/10.1016/0921-8890(95)00004-Y. ISSN 09218890
De Lange, M., et al.: Continual learning: A comparative study on how to defy forgetting in classification tasks, pp. 1–23 (2019)
Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, December 2016, pp. 779–788 (2016). https://doi.org/10.1109/CVPR.2016.91. ISSN 10636919
Howard, A.G., et al.: MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications (2017)
Diethe, T., Borchert, T., Thereska, E., Balle, B., Lawrence, N.: Continual Learning in Practice, (Nips) (2019). http://arxiv.org/abs/1903.05202
Song, H., Triguero, I., Özcan, E.: A review on the self and dual interactions between machine learning and optimisation. Prog. Artif. Intell. 8(2), 143–165 (2019). https://doi.org/10.1007/s13748-019-00185-z
Grua, E.M., Malavolta, I., Lago, P.: Self-adaptation in mobile apps: a systematic literature study. In: ICSE Workshop on Software Engineering for Adaptive and Self-Managing Systems, May 2019, pp. 51–62 (2019). https://doi.org/10.1109/SEAMS.2019.00016. ISSN 21567891
Muccini, H., Weyns, D.: Self-adaptation for cyber-physical systems: a systematic literature review. In: 2016 IEEE/ACM 11th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS), pp. 75–81 (2016). https://doi.org/10.1109/SEAMS.2016.016
Gama, J., Zliobaite, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift adaptation. ACM Comput. Surv. 46(4), 1–37 (2014). https://doi.org/10.1145/2523813. ISSN 15577341
Kitchenham, B.: Procedures for Performing Systematic Reviews, Keele University 33, 1–26, Keele, UK (2004)
Kroll, A.: Drivers of performance information use: systematic literature review and directions for future research. Public Perform. Manage. Rev. 38(3), 459–486 (2015). https://doi.org/10.1080/15309576.2015.1006469. ISSN 15579271
Gaudette, M., Roult, R., Lefebvre, S.: Winter Olympic games, cities, and tourism: a systematic literature review in this domain. J. Sport Tour. 21(4), 287–313 (2017). https://doi.org/10.1080/14775085.2017.1389298. ISSN 10295399
Fischer, K., Ekener-Petersen, E., Rydhmer, L., Björnberg, K.E.: Social impacts of GM crops in agriculture: a systematic literature review. Sustain. (Switz.) 7(7), 8598–8620 (2015). https://doi.org/10.3390/su7078598. ISSN 20711050
Kasten, E.P., McKinley, P.K.: MESO: supporting online decision making in autonomic computing systems. IEEE Trans. Knowl. Data Eng. 19(4), 485–499 (2007). https://doi.org/10.1109/TKDE.2007.1000. ISSN 10414347
Minku, L.L., White, A.P., Yao, X.: The impact of diversity on online ensemble learning in the presence of concept drift. IEEE Trans. Knowl. Data Eng. 22(5), 730–742 (2010). https://doi.org/10.1109/TKDE.2009.156. ISSN 10414347
Esfahani, N., Elkhodary, A., Malek, S.: A learning-based framework for engineering feature-oriented self-adaptive software systems. IEEE Trans. Softw. Eng. 39(11), 1467–1493 (2013). https://doi.org/10.1109/TSE.2013.37. ISSN 00985589
Moreira-Matias, L., Gama, J., Mendes-Moreira, J.: Concept neurons – handling drift issues for real-time industrial data mining. In: Berendt, B., et al. (eds.) ECML PKDD 2016, Part III. LNCS (LNAI), vol. 9853, pp. 96–111. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46131-1_18
Filho, R.R., Porter, B.: Defining emergent software using continuous self-assembly, perception, and learning. In: ACM Transactions on Autonomous and Adaptive Systems, vol. 12. Association for Computing Machinery (2017). https://doi.org/10.1145/3092691
Mayer, C., Mayer, R., Abdo, M.: Grand challenge: StreamLearner - distributed incremental machine learning on event streams. In: DEBS 2017 - Proceedings of the 11th ACM International Conference on Distributed Event-Based Systems, pp. 298–303. Association for Computing Machinery Inc. (2017). https://doi.org/10.1145/3093742.3095103. ISBN 9781450350655
Carvajal Soto, J.A., Tavakolizadeh, F., Gyulai, D.: An online machine learning framework for early detection of product failures in an industry 4.0 context. Int. J. Comput. Integr. Manuf. 32(4–5), 452–465 (2019)
del Campo, I., Martínez, V., Echanobe, J., Asua, E., Finker, R., Basterretxea, K.: A versatile hardware/software platform for personalized driver assistance based on online sequential extreme learning machines. Neural Comput. Appl. 31(12), 8871–8886 (2019). https://doi.org/10.1007/s00521-019-04386-4
Ren, S., et al.: Selection-based resampling ensemble algorithm for nonstationary imbalanced stream data learning. Knowl.-Based Syst. 163, 705–722 (2019)
Mounce, S.R., Boxall, J.B.: Implementation of an on-line artificial intelligence district meter area flow meter data analysis system for abnormality detection: a case study. Water Sci. Technol. Water Supply 10(3), 437–444 (2010). https://doi.org/10.2166/ws.2010.697. ISSN 16069749
Schölkopf, B., Janzing, D., Peters, J., Sgouritsa, E., Zhang, K., Mooij, J.: On causal and anticausal learning.In: Proceedings of the 29th International Conference on Machine Learning, ICML 2012, vol. 2, pp. 1255–1262 (2012)
Sutton, J.R., Mahajan, R., Akbilgic, O., Kamaleswaran, R.: PhysOnline: an open source machine learning pipeline for real-time analysis of streaming physiological waveform. IEEE J. Biomed. Health Inform. 23(1), 59–65 (2019)
Artikis, A., et al.: Industry paper: a prototype for credit card fraud management. In: DEBS 2017 - Proceedings of the 11th ACM International Conference on Distributed Event-Based Systems, pp. 249–260 (2017). https://doi.org/10.1145/3093742.3093912
Appelt, D., Nguyen, C.D., Panichella, A., Briand, L.C.: A machine-learning-driven evolutionary approach for testing web application firewalls. IEEE Trans. Reliab. 67(3), 733–757 (2018). https://doi.org/10.1109/TR.2018.2805763. ISSN 00189529
Kabir, M.A., Keung, J.W., Benniny, K.E., Zhang, M.: Assessing the significant impact of concept drift in software defect prediction. In: Proceedings - International Computer Software and Applications Conference, vol. 1, pp. 53–58 (2019). https://doi.org/10.1109/COMPSAC.2019.00017. ISSN 07303157
Washha, M., Qaroush, A., Mezghani, M., Sedes, F.: Unsupervised collective-based framework for dynamic retraining of supervised real-time spam tweets detection model. Expert Syst. Appl. 135, 129–152 (2019)
Belluf, T., Xavier, L., Giglio, R.: Case study on the business value impact of personalized recommendations on a large online retailer. In: RecSys’12 - Proceedings of the 6th ACM Conference on Recommender Systems (2012)
Fabijan, A., Dmitriev, P., Olsson, H.H., Bosch, J.: The benefits of controlled experimentation at scale. In: Proceedings - 43rd Euromicro Conference on Software Engineering and Advanced Applications, SEAA 2017 (2017)
Fabijan, A., Dmitriev, P., Olsson, H.H., Bosch, J.: Effective online controlled experiment analysis at large scale. In: Proceedings - 44th Euromicro Conference on Software Engineering and Advanced Applications, SEAA 2018 (2018)
Fabijan, A., Dmitriev, P., Olsson, H.H., Bosch, J.: The online controlled experiment lifecycle. IEEE Softw. PP(1), 1 (2018)
Filho, R., Porter, B.: Defining emergent software using continuous self-assembly, perception, and learning. ACM Trans. Auton. Adapt. Syst. 12(3), 1–25 (2017)
Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)
Weyns, D.: Software engineering of self-adaptive systems: an organised tour and future challenges. In: Handbook of Software Engineering, pp. 1–41 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Green, R., Bosch, J., Holmström Olsson, H. (2021). Autonomously Improving Systems in Industry: A Systematic Literature Review. In: Klotins, E., Wnuk, K. (eds) Software Business. ICSOB 2020. Lecture Notes in Business Information Processing, vol 407. Springer, Cham. https://doi.org/10.1007/978-3-030-67292-8_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-67292-8_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-67291-1
Online ISBN: 978-3-030-67292-8
eBook Packages: Computer ScienceComputer Science (R0)