Abstract
Modern competitive solvers employ various preprocessing techniques to efficiently tackle complex problems. This work introduces two preprocessing techniques to improve solving weighted partial MaxSAT problems: Generalized Boolean Multilevel Optimization (GBMO) and Trimming MaxSAT (TrimMaxSAT).
GBMO refines and extends Boolean Multilevel Optimization (BMO), thereby splitting instances due to their distribution of weights into multiple less complex subproblems, which are solved one after the other to obtain the overall solution.
The second technique, TrimMaxSAT, finds unsatisfiable soft clauses and removes them from the instance. This reduces the complexity of the MaxSAT instance and works especially well in combination with GBMO. The proposed algorithm works incrementally in a binary search fashion, testing the satisfiability of every soft clause. Furthermore, as a by-product, typically an initial weight close to the maximum is found, which is in turn advantageous w.r.t. the size of e.g. the Dynamic Polynomial Watchdog (DPW) encoding.
Both techniques can be used by all MaxSAT solvers, though our focus lies on Pseudo Boolean constraint based MaxSAT solvers. Experimental results show the effectiveness of both techniques on a large set of benchmarks from a hardware security application and from the 2019 MaxSAT Evaluation. In particular for the hardest of the application benchmarks, the solver Pacose with GBMO and TrimMaxSAT performs best compared to the MaxSAT Evaluation solvers of 2019. For the benchmarks of the 2019 MaxSAT Evaluation, we show that with the proposed techniques the top solver combination solves significantly more instances.
This work is supported by DFG project “Algebraic Fault Attacks” (BE 1176/20-2).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
QMaxSAT 2nd solver 2017 and Pacose 3rd solver 2018, same number of solved instances as 2nd MaxHS.
- 2.
Available at the MaxSAT Evaluation 2020 [1].
- 3.
These instances had weights bigger than the top weight.
References
MaxSAT evaluation (2006–2020). https://maxsat-evaluations.github.io
Abramé, A., Habet, D.: Local max-resolution in branch and bound solvers for Max-SAT. In: 2014 IEEE 26th International Conference on Tools with Artificial Intelligence, pp. 336–343. IEEE (2014)
Alviano, M., Dodaro, C., Ricca, F.: A MaxSAT algorithm using cardinality constraints of bounded size. In: Twenty-Fourth International Joint Conference on Artificial Intelligence (2015)
Ansótegui, C., Bonet, M.L., Gabàs, J., Levy, J.: Improving SAT-based weighted MaxSAT solvers. In: Milano, M. (ed.) CP 2012. LNCS, pp. 86–101. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33558-7_9
Ansótegui, C., Bonet, M.L., Gabàs, J., Levy, J.: Improving WPM2 for (weighted) partial MaxSAT. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 117–132. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40627-0_12
Ansótegui, C., Gabas, J.: WPm3: an (in) complete algorithm for weighted partial MaxSAT. Artif. Intel. 250, 37–57 (2017)
Argelich, J., Lynce, I., Marques-Silva, J.: On solving Boolean multilevel optimization problems. In: Twenty-First International Joint Conference on Artificial Intelligence (2009)
Audemard, G., Simon, L.: On the glucose SAT solver. Int. J. Artif. Intel. Tools 27(01), 1840001 (2018)
Bacchus, F.: MaxHS in the 2018 MaxSAT evaluation. MaxSAT Evaluation 2018, pp. 11, 12 (2018)
Bacchus, F., Järvisalo, M., Martins, R.: MaxSAT Evaluation 2019: Solver and Benchmark Descriptions. Department of Computer Science Report Series B, Department of Computer Science, University of Helsinki (2019)
Bailleux, O., Boufkhad, Y.: Efficient CNF encoding of Boolean cardinality constraints. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 108–122. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45193-8_8
Berg, J., Demirović, E., Stuckey, P.J.: Core-boosted linear search for incomplete MaxSAT. In: Rousseau, L.-M., Stergiou, K. (eds.) CPAIOR 2019. LNCS, vol. 11494, pp. 39–56. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19212-9_3
Bradley, G.H.: Algorithm and bound for the greatest common divisor of n integers. Commun. ACM 13(7), 433–436 (1970)
Eén, N., Sörensson, N.: Translating pseudo-Boolean constraints into SAT. J. Satisf. Boolean Model. Comput. 2(1–4), 1–26 (2006)
Ehrgott, M., Gandibleux, X.: A survey and annotated bibliography of multiobjective combinatorial optimization. OR-Spektrum 22(4), 425–460 (2000)
Ehrgott, M., Gandibleux, X., Przybylski, A.: Exact methods for multi-objective combinatorial optimisation. In: Greco, S., Ehrgott, M., Figueira, J.R. (eds.) Multiple Criteria Decision Analysis. ISORMS, vol. 233, pp. 817–850. Springer, New York (2016). https://doi.org/10.1007/978-1-4939-3094-4_19
Fazekas, K., Biere, A., Scholl, C.: Incremental inprocessing in SAT solving. In: Janota, M., Lynce, I. (eds.) SAT 2019. LNCS, vol. 11628, pp. 136–154. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24258-9_9
Ignatiev, A., Morgado, A., Marques-Silva, J.: RC2: a python-based MaxSAT solver. MaxSAT Evaluation 2018, p. 22 (2018)
Janota, M., Lynce, I., Marques-Silva, J.: Algorithms for computing backbones of propositional formulae. AI Commun. 28(2), 161–177 (2015)
Joshi, S., Kumar, P., Martins, R., Rao, S.: Approximation strategies for incomplete MaxSAT. In: Hooker, J. (ed.) CP 2018. LNCS, vol. 11008, pp. 219–228. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98334-9_15
Korhonen, T., Berg, J., Saikko, P., Järvisalo, M.: MaxPre: an extended MaxSAT preprocessor. In: Gaspers, S., Walsh, T. (eds.) SAT 2017. LNCS, vol. 10491, pp. 449–456. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66263-3_28
Koshimura, M., Zhang, T., Fujita, H., Hasegawa, R.: QMaxSAT: a partial Max-SAT solver system description. J. Satisf. Boolean Model. Comput. 8, 95–100 (2012)
Marques-Silva, J., Argelich, J., Graça, A., Lynce, I.: Boolean lexicographic optimization: algorithms & applications. Ann. Math. Artif. Intell. 62(3–4), 317–343 (2011)
Marques-Silva, J., Janota, M., Lynce, I.: On computing backbones of propositional theories. In: ECAI, vol. 215, pp. 15–20 (2010)
Ogawa, T., Liu, Y., Hasegawa, R., Koshimura, M., Fujita, H.: Modulo based CNF encoding of cardinality constraints and its application to MaxSAT solvers. In: 2013 IEEE 25th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 9–17. IEEE (2013)
Paxian, T., Reimer, S., Becker, B.: Dynamic polynomial watchdog encoding for solving weighted MaxSAT. In: Beyersdorff, O., Wintersteiger, C.M. (eds.) SAT 2018. LNCS, vol. 10929, pp. 37–53. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94144-8_3
Paxian, T., Reimer, S., Becker, B.: Pacose: an iterative SAT-based MaxSAT solver. MaxSAT Evaluation 2018, p. 20 (2018)
Piotrów, M.: UWrMaxSat-a new MiniSat+-based solver in MaxSAT evaluation 2019. MaxSAT Evaluation 2019, p. 11 (2019)
Previti, A., Järvisalo, M.: A preference-based approach to backbone computation with application to argumentation. In: Proceedings of the 33rd Annual ACM Symposium on Applied Computing, pp. 896–902 (2018)
Raiola, P., Paxian, T., Becker, B.: Partial (un-) weighted MaxSAT benchmarks: minimizing witnesses for security weaknesses in reconfigurable scan networks. MaxSAT Evaluation 2020, p. 44 (2020)
Raiola, P., Paxian, T., Becker, B.: Minimal witnesses for security weaknesses in reconfigurable scan networks. In: IEEE European Test Symposium, ETS, pp. 1–6. IEEE (2020)
Ulungu, E.L., Teghem, J.: Multi-objective combinatorial optimization problems: a survey. J. Multi-Crit. Decis. Anal. 3(2), 83–104 (1994)
Warners, J.P.: A linear-time transformation of linear inequalities into conjunctive normal form. Inf. Process. Lett. 68(2), 63–69 (1998)
Wimmer, R., Scholl, C., Becker, B.: The (D)QBF preprocessor HQSpre - underlying theory and its implementation. J. Satisf. Boolean Model. Comput. 11(1), 3–52 (2019)
Zha, A., Uemura, N., Koshimura, M., Fujita, H.: Mixed radix weight totalizer encoding for pseudo-Boolean constraints. In: 2017 IEEE 29th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 868–875. IEEE (2017)
Zhang, H., Shen, H., Manya, F.: Exact algorithms for MAX-SAT. Electr. Notes Theor. Comput. Sci. 86(1), 190–203 (2003)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Paxian, T., Raiola, P., Becker, B. (2021). On Preprocessing for Weighted MaxSAT. In: Henglein, F., Shoham, S., Vizel, Y. (eds) Verification, Model Checking, and Abstract Interpretation. VMCAI 2021. Lecture Notes in Computer Science(), vol 12597. Springer, Cham. https://doi.org/10.1007/978-3-030-67067-2_25
Download citation
DOI: https://doi.org/10.1007/978-3-030-67067-2_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-67066-5
Online ISBN: 978-3-030-67067-2
eBook Packages: Computer ScienceComputer Science (R0)