On Preprocessing for Weighted MaxSAT | SpringerLink
Skip to main content

On Preprocessing for Weighted MaxSAT

  • Conference paper
  • First Online:
Verification, Model Checking, and Abstract Interpretation (VMCAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12597))

  • 914 Accesses

Abstract

Modern competitive solvers employ various preprocessing techniques to efficiently tackle complex problems. This work introduces two preprocessing techniques to improve solving weighted partial MaxSAT problems: Generalized Boolean Multilevel Optimization (GBMO) and Trimming MaxSAT (TrimMaxSAT).

GBMO refines and extends Boolean Multilevel Optimization (BMO), thereby splitting instances due to their distribution of weights into multiple less complex subproblems, which are solved one after the other to obtain the overall solution.

The second technique, TrimMaxSAT, finds unsatisfiable soft clauses and removes them from the instance. This reduces the complexity of the MaxSAT instance and works especially well in combination with GBMO. The proposed algorithm works incrementally in a binary search fashion, testing the satisfiability of every soft clause. Furthermore, as a by-product, typically an initial weight close to the maximum is found, which is in turn advantageous w.r.t. the size of e.g. the Dynamic Polynomial Watchdog (DPW) encoding.

Both techniques can be used by all MaxSAT solvers, though our focus lies on Pseudo Boolean constraint based MaxSAT solvers. Experimental results show the effectiveness of both techniques on a large set of benchmarks from a hardware security application and from the 2019 MaxSAT Evaluation. In particular for the hardest of the application benchmarks, the solver Pacose with GBMO and TrimMaxSAT performs best compared to the MaxSAT Evaluation solvers of 2019. For the benchmarks of the 2019 MaxSAT Evaluation, we show that with the proposed techniques the top solver combination solves significantly more instances.

This work is supported by DFG project “Algebraic Fault Attacks” (BE 1176/20-2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 10295
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 12869
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    QMaxSAT 2nd solver 2017 and Pacose 3rd solver 2018, same number of solved instances as 2nd MaxHS.

  2. 2.

    Available at the MaxSAT Evaluation 2020 [1].

  3. 3.

    These instances had weights bigger than the top weight.

References

  1. MaxSAT evaluation (2006–2020). https://maxsat-evaluations.github.io

  2. Abramé, A., Habet, D.: Local max-resolution in branch and bound solvers for Max-SAT. In: 2014 IEEE 26th International Conference on Tools with Artificial Intelligence, pp. 336–343. IEEE (2014)

    Google Scholar 

  3. Alviano, M., Dodaro, C., Ricca, F.: A MaxSAT algorithm using cardinality constraints of bounded size. In: Twenty-Fourth International Joint Conference on Artificial Intelligence (2015)

    Google Scholar 

  4. Ansótegui, C., Bonet, M.L., Gabàs, J., Levy, J.: Improving SAT-based weighted MaxSAT solvers. In: Milano, M. (ed.) CP 2012. LNCS, pp. 86–101. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33558-7_9

    Chapter  Google Scholar 

  5. Ansótegui, C., Bonet, M.L., Gabàs, J., Levy, J.: Improving WPM2 for (weighted) partial MaxSAT. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 117–132. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40627-0_12

    Chapter  Google Scholar 

  6. Ansótegui, C., Gabas, J.: WPm3: an (in) complete algorithm for weighted partial MaxSAT. Artif. Intel. 250, 37–57 (2017)

    Article  MathSciNet  Google Scholar 

  7. Argelich, J., Lynce, I., Marques-Silva, J.: On solving Boolean multilevel optimization problems. In: Twenty-First International Joint Conference on Artificial Intelligence (2009)

    Google Scholar 

  8. Audemard, G., Simon, L.: On the glucose SAT solver. Int. J. Artif. Intel. Tools 27(01), 1840001 (2018)

    Article  Google Scholar 

  9. Bacchus, F.: MaxHS in the 2018 MaxSAT evaluation. MaxSAT Evaluation 2018, pp. 11, 12 (2018)

    Google Scholar 

  10. Bacchus, F., Järvisalo, M., Martins, R.: MaxSAT Evaluation 2019: Solver and Benchmark Descriptions. Department of Computer Science Report Series B, Department of Computer Science, University of Helsinki (2019)

    Google Scholar 

  11. Bailleux, O., Boufkhad, Y.: Efficient CNF encoding of Boolean cardinality constraints. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 108–122. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45193-8_8

    Chapter  Google Scholar 

  12. Berg, J., Demirović, E., Stuckey, P.J.: Core-boosted linear search for incomplete MaxSAT. In: Rousseau, L.-M., Stergiou, K. (eds.) CPAIOR 2019. LNCS, vol. 11494, pp. 39–56. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19212-9_3

    Chapter  Google Scholar 

  13. Bradley, G.H.: Algorithm and bound for the greatest common divisor of n integers. Commun. ACM 13(7), 433–436 (1970)

    Article  MathSciNet  Google Scholar 

  14. Eén, N., Sörensson, N.: Translating pseudo-Boolean constraints into SAT. J. Satisf. Boolean Model. Comput. 2(1–4), 1–26 (2006)

    Google Scholar 

  15. Ehrgott, M., Gandibleux, X.: A survey and annotated bibliography of multiobjective combinatorial optimization. OR-Spektrum 22(4), 425–460 (2000)

    Article  MathSciNet  Google Scholar 

  16. Ehrgott, M., Gandibleux, X., Przybylski, A.: Exact methods for multi-objective combinatorial optimisation. In: Greco, S., Ehrgott, M., Figueira, J.R. (eds.) Multiple Criteria Decision Analysis. ISORMS, vol. 233, pp. 817–850. Springer, New York (2016). https://doi.org/10.1007/978-1-4939-3094-4_19

    Chapter  Google Scholar 

  17. Fazekas, K., Biere, A., Scholl, C.: Incremental inprocessing in SAT solving. In: Janota, M., Lynce, I. (eds.) SAT 2019. LNCS, vol. 11628, pp. 136–154. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24258-9_9

    Chapter  Google Scholar 

  18. Ignatiev, A., Morgado, A., Marques-Silva, J.: RC2: a python-based MaxSAT solver. MaxSAT Evaluation 2018, p. 22 (2018)

    Google Scholar 

  19. Janota, M., Lynce, I., Marques-Silva, J.: Algorithms for computing backbones of propositional formulae. AI Commun. 28(2), 161–177 (2015)

    Article  MathSciNet  Google Scholar 

  20. Joshi, S., Kumar, P., Martins, R., Rao, S.: Approximation strategies for incomplete MaxSAT. In: Hooker, J. (ed.) CP 2018. LNCS, vol. 11008, pp. 219–228. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98334-9_15

    Chapter  Google Scholar 

  21. Korhonen, T., Berg, J., Saikko, P., Järvisalo, M.: MaxPre: an extended MaxSAT preprocessor. In: Gaspers, S., Walsh, T. (eds.) SAT 2017. LNCS, vol. 10491, pp. 449–456. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66263-3_28

    Chapter  Google Scholar 

  22. Koshimura, M., Zhang, T., Fujita, H., Hasegawa, R.: QMaxSAT: a partial Max-SAT solver system description. J. Satisf. Boolean Model. Comput. 8, 95–100 (2012)

    MathSciNet  Google Scholar 

  23. Marques-Silva, J., Argelich, J., Graça, A., Lynce, I.: Boolean lexicographic optimization: algorithms & applications. Ann. Math. Artif. Intell. 62(3–4), 317–343 (2011)

    Article  MathSciNet  Google Scholar 

  24. Marques-Silva, J., Janota, M., Lynce, I.: On computing backbones of propositional theories. In: ECAI, vol. 215, pp. 15–20 (2010)

    Google Scholar 

  25. Ogawa, T., Liu, Y., Hasegawa, R., Koshimura, M., Fujita, H.: Modulo based CNF encoding of cardinality constraints and its application to MaxSAT solvers. In: 2013 IEEE 25th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 9–17. IEEE (2013)

    Google Scholar 

  26. Paxian, T., Reimer, S., Becker, B.: Dynamic polynomial watchdog encoding for solving weighted MaxSAT. In: Beyersdorff, O., Wintersteiger, C.M. (eds.) SAT 2018. LNCS, vol. 10929, pp. 37–53. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94144-8_3

    Chapter  Google Scholar 

  27. Paxian, T., Reimer, S., Becker, B.: Pacose: an iterative SAT-based MaxSAT solver. MaxSAT Evaluation 2018, p. 20 (2018)

    Google Scholar 

  28. Piotrów, M.: UWrMaxSat-a new MiniSat+-based solver in MaxSAT evaluation 2019. MaxSAT Evaluation 2019, p. 11 (2019)

    Google Scholar 

  29. Previti, A., Järvisalo, M.: A preference-based approach to backbone computation with application to argumentation. In: Proceedings of the 33rd Annual ACM Symposium on Applied Computing, pp. 896–902 (2018)

    Google Scholar 

  30. Raiola, P., Paxian, T., Becker, B.: Partial (un-) weighted MaxSAT benchmarks: minimizing witnesses for security weaknesses in reconfigurable scan networks. MaxSAT Evaluation 2020, p. 44 (2020)

    Google Scholar 

  31. Raiola, P., Paxian, T., Becker, B.: Minimal witnesses for security weaknesses in reconfigurable scan networks. In: IEEE European Test Symposium, ETS, pp. 1–6. IEEE (2020)

    Google Scholar 

  32. Ulungu, E.L., Teghem, J.: Multi-objective combinatorial optimization problems: a survey. J. Multi-Crit. Decis. Anal. 3(2), 83–104 (1994)

    Article  Google Scholar 

  33. Warners, J.P.: A linear-time transformation of linear inequalities into conjunctive normal form. Inf. Process. Lett. 68(2), 63–69 (1998)

    Article  MathSciNet  Google Scholar 

  34. Wimmer, R., Scholl, C., Becker, B.: The (D)QBF preprocessor HQSpre - underlying theory and its implementation. J. Satisf. Boolean Model. Comput. 11(1), 3–52 (2019)

    MathSciNet  Google Scholar 

  35. Zha, A., Uemura, N., Koshimura, M., Fujita, H.: Mixed radix weight totalizer encoding for pseudo-Boolean constraints. In: 2017 IEEE 29th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 868–875. IEEE (2017)

    Google Scholar 

  36. Zhang, H., Shen, H., Manya, F.: Exact algorithms for MAX-SAT. Electr. Notes Theor. Comput. Sci. 86(1), 190–203 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Paxian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Paxian, T., Raiola, P., Becker, B. (2021). On Preprocessing for Weighted MaxSAT. In: Henglein, F., Shoham, S., Vizel, Y. (eds) Verification, Model Checking, and Abstract Interpretation. VMCAI 2021. Lecture Notes in Computer Science(), vol 12597. Springer, Cham. https://doi.org/10.1007/978-3-030-67067-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67067-2_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67066-5

  • Online ISBN: 978-3-030-67067-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics