Imitation Learning as f-Divergence Minimization | SpringerLink
Skip to main content

Imitation Learning as f-Divergence Minimization

  • Conference paper
  • First Online:
Algorithmic Foundations of Robotics XIV (WAFR 2020)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 17))

Included in the following conference series:

Abstract

We address the problem of imitation learning with multi-modal demonstrations. Instead of attempting to learn all modes, we argue that in many tasks it is sufficient to imitate any one of them. We show that the state-of-the-art methods such as GAIL and behavior cloning, due to their choice of loss function, often incorrectly interpolate between such modes. Our key insight is to minimize the right divergence between the learner and the expert state-action distributions, namely the reverse KL divergence or I-projection. We propose a general imitation learning framework for estimating and minimizing any f-Divergence. By plugging in different divergences, we are able to recover existing algorithms such as Behavior Cloning (Kullback-Leibler), GAIL (Jensen Shannon) and DAgger (Total Variation). Empirical results show that our approximate I-projection technique is able to imitate multi-modal behaviors more reliably than GAIL and behavior cloning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 32031
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 40039
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 40039
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We refer the reader to [7] for appendices containing detailed exposition.

  2. 2.

    For a convex function \(f(\cdot )\), the convex conjugate is \(f^*(v) = \sup _{u \in \mathrm {dom}_f} \left( uv - f(u) \right) \). Also \((f^*)^* = f\).

References

  1. Ross, S., Melik-Barkhudarov, N., Shankar, K.S., Wendel, A., Dey, D., Bagnell, J.A., Hebert, M.: Learning monocular reactive UAV control in cluttered natural environments. In: 2013 IEEE International Conference on Robotics and Automation (ICRA) (2013)

    Google Scholar 

  2. Finn, C., Levine, S., Abbeel, P.: Guided cost learning: deep inverse optimal control via policy optimization. In: International Conference on Machine Learning, pp. 49–58 (2016)

    Google Scholar 

  3. Pomerleau, D.A.: ALVINN: an autonomous land vehicle in a neural network. In: Touretzky, D.S. (ed.) Advances in Neural Information Processing Systems, vol. 1, pp. 305–313. Morgan-Kaufmann (1989)

    Google Scholar 

  4. Li, Y., Song, J., Ermon, S.: Infogail: interpretable imitation learning from visual demonstrations. In: Advances in Neural Information Processing Systems, pp. 3812–3822 (2017)

    Google Scholar 

  5. Ho, J., Ermon, S.: Generative adversarial imitation learning. In: Advances in Neural Information Processing Systems, pp. 4565–4573 (2016)

    Google Scholar 

  6. Nowozin, S., Cseke, B., Tomioka, R.: f-gan: training generative neural samplers using variational divergence minimization. In: Advances in Neural Information Processing Systems, pp. 271–279 (2016)

    Google Scholar 

  7. Ke, L., Choudhury, S., Barnes, M., Sun, W., Lee, G., Srinivasa, S.: Imitation learning as \(f\)-divergence minimization. arXiv preprint arXiv:1905.12888v2 (2019)

  8. Osa, T., Pajarinen, J., Neumann, G., Bagnell, J.A., Abbeel, P., Peters, J.: An algorithmic perspective on imitation learning. arXiv preprint arXiv:1811.06711 (2018)

  9. Argall, B.D., Chernova, S., Veloso, M., Browning, B.: A survey of robot learning from demonstration. Robot. Autonom. Syst. 57(5), 469–483 (2009)

    Article  Google Scholar 

  10. Billard, A.G., Calinon, S., Dillmann, R.: Learning from humans. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, pp. 1995–2014. Springer, Heidelberg (2016)

    Chapter  Google Scholar 

  11. Bagnell, J.A.: An invitation to imitation. Technical Report CMU-RI-TR-15-08, Carnegie Mellon University, Pittsburgh, PA, March 2015

    Google Scholar 

  12. Ross, S., Bagnell, J.A.: Reinforcement and imitation learning via interactive no-regret learning. arXiv preprint arXiv:1406.5979 (2014)

  13. Sun, W., Venkatraman, A., Gordon, G.J., Boots, B., Bagnell, J.A.: Deeply aggrevated: differentiable imitation learning for sequential prediction. In: Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 3309–3318. JMLR. org (2017)

    Google Scholar 

  14. Sun, W., Bagnell, J.A., Boots, B.: Truncated horizon policy search: combining reinforcement learning & imitation learning. arXiv:1805.11240 (2018)

  15. Cheng, C.A., Yan, X., Wagener, N., Boots, B.: Fast policy learning through imitation and reinforcement. arXiv:1805.10413 (2018)

  16. Rajeswaran, A., Kumar, V., Gupta, A., Vezzani, G., Schulman, J., Todorov, E., Levine, S.: Learning complex dexterous manipulation with deep reinforcement learning and demonstrations. arXiv preprint arXiv:1709.10087 (2017)

  17. Pomerleau, D.A.: Alvinn: an autonomous land vehicle in a neural network. In: Advances in Neural Information Processing Systems, pp. 305–313 (1989)

    Google Scholar 

  18. Ross, S., Gordon, G., Bagnell, D.: A reduction of imitation learning and structured prediction to no-regret online learning. In: AISTATS (2011)

    Google Scholar 

  19. Kim, B., Farahmand, A.M., Pineau, J., Precup, D.: Learning from limited demonstrations. In: Advances in Neural Information Processing Systems, pp. 2859–2867 (2013)

    Google Scholar 

  20. Gupta, S., Davidson, J., Levine, S., Sukthankar, R., Malik, J.: Cognitive mapping and planning for visual navigation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  21. Laskey, M., Lee, J., Hsieh, W., Liaw, R., Mahler, J., Fox, R., Goldberg, K.: Iterative noise injection for scalable imitation learning. arXiv preprint arXiv:1703.09327 (2017)

  22. Laskey, M., Staszak, S., Hsieh, W.Y.S., Mahler, J., Pokorny, F.T., Dragan, A.D. and Goldberg, K.: Shiv: reducing supervisor burden in dagger using support vectors for efficient learning from demonstrations in high dimensional state spaces. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 462–469. IEEE (2016)

    Google Scholar 

  23. Laskey, M., Chuck, C., Lee, J., Mahler, J., Krishnan, S., Jamieson, K., Dragan, A., Goldberg, K.: Comparing human-centric and robot-centric sampling for robot deep learning from demonstrations. In: 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE (2017)

    Google Scholar 

  24. Ratliff, N.D., Silver, D., Bagnell, J.A.: Learning to search: functional gradient techniques for imitation learning. Autonom. Robots 27(1), 25–53 (2009)

    Article  Google Scholar 

  25. Ratliff, N.D., Bagnell, J.A., Zinkevich, M.A.: Maximum margin planning. In: International Conference on Machine Learning. ACM (2006)

    Google Scholar 

  26. Piot, B., Geist, M., Pietquin, O.: Bridging the gap between imitation learning and inverse reinforcement learning. IEEE Trans. Neural Netw. Learn. Syst. 28(8), 1814–1826 (2017)

    Article  MathSciNet  Google Scholar 

  27. Abbeel, P., Ng, A.Y.: Apprenticeship learning via inverse reinforcement learning. In: International Conference on Machine Learning. ACM (2004)

    Google Scholar 

  28. Ziebart, B.D., Maas, A.L., Bagnell, J.A., Dey, A.K.: Maximum entropy inverse reinforcement learning. In: AAAI (2008)

    Google Scholar 

  29. Wulfmeier, M., Ondruska, P., Posner, I.: Maximum entropy deep inverse reinforcement learning. arXiv preprint arXiv:1507.04888 (2015)

  30. Syed, U., Schapire, R.E.: A game-theoretic approach to apprenticeship learning. In: Advances in Neural Information Processing Systems (2008)

    Google Scholar 

  31. Ho, J., Gupta, J., Ermon, S.: Model-free imitation learning with policy optimization. In: International Conference on Machine Learning (2016)

    Google Scholar 

  32. Finn, C., Christiano, P., Abbeel, P., Levine, S.: A connection between generative adversarial networks, inverse reinforcement learning, and energy-based models. arXiv preprint arXiv:1611.03852 (2016)

  33. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  34. Blondé, L., Kalousis, A.: Sample-efficient imitation learning via generative adversarial nets. arXiv preprint arXiv:1809.02064 (2018)

  35. Fu, J., Luo, K., Levine, S.: Learning robust rewards with adversarial inverse reinforcement learning. arXiv preprint arXiv:1710.11248 (2017)

  36. Qureshi, A.H., Boots, B., Yip, M.C.: Adversarial imitation via variational inverse reinforcement learning. arXiv preprint arXiv:1809.06404 (2018)

  37. Peng, X.B., Kanazawa, A., Toyer, S., Abbeel, P., Levine, S.: Variational discriminator bottleneck: improving imitation learning, inverse RL, and GANS by constraining information flow. arXiv preprint arXiv:1810.00821 (2018)

  38. Torabi, F., Warnell, G., Stone, P.: Generative adversarial imitation from observation. arXiv preprint arXiv:1807.06158 (2018)

  39. Torabi, F., Warnell, G., Stone, P.: Behavioral cloning from observation. arXiv preprint arXiv:1805.01954 (2018)

  40. Peng, X.B., Kanazawa, A., Malik, J., Abbeel, P., Levine, S.: Sfv: reinforcement learning of physical skills from videos. In: SIGGRAPH Asia 2018 Technical Papers, p. 178. ACM (2018)

    Google Scholar 

  41. Nguyen, X., Wainwright, M.J., Jordan, M.I.: Estimating divergence functionals and the likelihood ratio by convex risk minimization. IEEE Trans. Inf. Theory 56(11), 5847–5861 (2010)

    Article  MathSciNet  Google Scholar 

  42. Boularias, A., Kober, J., Peters, J.: Relative entropy inverse reinforcement learning. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 182–189 (2011)

    Google Scholar 

  43. Rhinehart, N., Kitani, K.M., Vernaza, P.: R2p2: a reparameterized pushforward policy for diverse, precise generative path forecasting. In: The European Conference on Computer Vision (ECCV), September 2018

    Google Scholar 

  44. Ghasemipour, S.K.S., Gu, S., Zemel, R.: Understanding the relation between maximum-entropy inverse reinforcement learning and behaviour cloning. In: Workshop ICLR (2018)

    Google Scholar 

  45. Babes, M., Marivate, V.N., Subramanian, K., Littman, M.L.: Apprenticeship learning about multiple intentions. In: International Conference on Machine Learning, pp. 897–904 (2011)

    Google Scholar 

  46. Dimitrakakis, C., Rothkopf, C.A.: Bayesian multitask inverse reinforcement learning. In: European Workshop on Reinforcement Learning, pp. 273–284. Springer (2011)

    Google Scholar 

  47. Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., Abbeel, P.: Infogan: interpretable representation learning by information maximizing generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2172–2180 (2016)

    Google Scholar 

  48. Hausman, K., Chebotar, Y., Schaal, S., Sukhatme, G., Lim, J.J.: Multi-modal imitation learning from unstructured demonstrations using generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 1235–1245 (2017)

    Google Scholar 

  49. Lee, K., Choi, S. and Oh, S.: Maximum causal tsallis entropy imitation learning. In: Advances in Neural Information Processing Systems (2018)

    Google Scholar 

  50. Lee, K., Choi, S., Oh, S.: Sparse Markov decision processes with causal sparse tsallis entropy regularization for reinforcement learning. IEEE Robot. Autom. Lett. 3(3), 1466–1473 (2018)

    Article  Google Scholar 

  51. Belousov, B., Peters, J.: f-divergence constrained policy improvement. arXiv preprint arXiv:1801.00056 (2017)

  52. Csiszár, I., Shields, P.C.: Information Theory and Statistics: A Tutorial. Now Publishers Inc, Norwell (2004)

    Book  Google Scholar 

  53. Liese, F., Vajda, I.: On divergences and informations in statistics and information theory. IEEE Trans. Inf. Theory 52(10), 4394–4412 (2006)

    Article  MathSciNet  Google Scholar 

  54. Kanamori, T., Suzuki, T., Sugiyama, M.: Statistical analysis of kernel-based least-squares density-ratio estimation. Mach. Learn. 86(3), 335–367 (2012)

    Article  MathSciNet  Google Scholar 

  55. Zhang, M., Bird, T., Habib, R., Xu, T., Barber, D.: Variational f-divergence minimization. arXiv preprint arXiv:1907.11891 (2019)

  56. Sun, W., Vemula, A., Boots, B., Bagnell, J.A.: Provably efficient imitation learning from observation alone. arXiv preprint arXiv:1905.10948 (2019)

Download references

Acknowledgements

This work was (partially) funded by the National Institute of Health R01 (#R01EB019335), National Science Foundation CPS (#1544797), National Science Foundation NRI (#1637748), the Office of Naval Research, the RCTA, Amazon, and Honda Research Institute USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liyiming Ke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ke, L., Choudhury, S., Barnes, M., Sun, W., Lee, G., Srinivasa, S. (2021). Imitation Learning as f-Divergence Minimization. In: LaValle, S.M., Lin, M., Ojala, T., Shell, D., Yu, J. (eds) Algorithmic Foundations of Robotics XIV. WAFR 2020. Springer Proceedings in Advanced Robotics, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-030-66723-8_19

Download citation

Publish with us

Policies and ethics