Orthos: A Trustworthy AI Framework for Data Acquisition | SpringerLink
Skip to main content

Orthos: A Trustworthy AI Framework for Data Acquisition

  • Conference paper
  • First Online:
Engineering Multi-Agent Systems (EMAS 2020)

Abstract

Information acquisition through crowdsensing with mobile agents is a popular way to collect data, especially in the context of smart cities where the deployment of dedicated data collectors is expensive and ineffective. It requires efficient information elicitation mechanisms to guarantee that the collected data are accurately acquired and reported. Such mechanisms can be implemented via smart contracts on blockchain to enable privacy and trust. In this work we develop Orthos, a blockchain-based trustworthy framework for spontaneous location-based crowdsensing queries without assuming any prior knowledge about them. We employ game-theoretic mechanisms to incentivize agents to report truthfully and ensure that the information is collected at the desired location while ensuring the privacy of the agents. We identify six necessary characteristics for information elicitation mechanisms to be applicable in spontaneous location-based settings and implement an existing state-of-the-art mechanism using smart contracts. Additionally, as location information is exogenous to these mechanisms, we design the Proof-of-Location protocol to ensure that agents gather the data at the desired locations. We examine the performance of Orthos on Rinkeby Ethereum testnet and conduct experiments with live audience.

In Greek, Orthos means correct and accurate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://bitcoin.org/.

  2. 2.

    https://ethereum.org/.

  3. 3.

    https://ripple.com.

  4. 4.

    https://docs.soliditylang.org/en/v0.7.5/.

  5. 5.

    Keccak is a versatile cryptographic function. Best known as a hash function, it nevertheless can also be used for authentication, encryption and pseudo-random number generation. For more information, please refer to https://keccak.team/keccak.html.

  6. 6.

    https://rinkeby.etherscan.io/.

  7. 7.

    https://infura.io/docs.

  8. 8.

    https://www.web3labs.com/web3j.

  9. 9.

    https://docs.soliditylang.org/en/v0.4.24/contracts.html/events.

  10. 10.

    https://provable.xyz.

References

  1. Abraham, M., Jevitha, K.P.: Runtime verification and vulnerability testing of smart contracts. In: Singh, M., Gupta, P.K., Tyagi, V., Flusser, J., Ören, T., Kashyap, R. (eds.) ICACDS 2019. CCIS, vol. 1046, pp. 333–342. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-9942-8_32

    Chapter  Google Scholar 

  2. Benet, J.: Ipfs-content addressed, versioned, p2p file system. arXiv preprint arXiv:1407.3561 (2014)

  3. Bogner, A., Chanson, M., Meeuw, A.: A decentralised sharing app running a smart contract on the ethereum blockchain. In: Proceedings of the 6th International Conference on the Internet of Things, pp. 177–178. ACM (2016)

    Google Scholar 

  4. Bulusu, N., Heidemann, J., Estrin, D.: GPS-less low-cost outdoor localization for very small devices. IEEE Pers. Commun. 7(5), 28–34 (2000)

    Article  Google Scholar 

  5. Buterin, V., et al.: A next-generation smart contract and decentralized application platform. white paper (2014)

    Google Scholar 

  6. Čapkun, S., Hamdi, M., Hubaux, J.P.: GPS-free positioning in mobile ad hoc networks. Cluster Comput. 5(2), 157–167 (2002)

    Article  Google Scholar 

  7. Chatzopoulos, D., Gujar, S., Faltings, B., Hui, P.: Privacy preserving and cost optimal mobile crowdsensing using smart contracts on blockchain. In: 2018 IEEE 15th International Conference on Mobile Ad Hoc and Sensor Systems (MASS), pp. 442–450. IEEE Computer Society (2018)

    Google Scholar 

  8. Chatzopoulos, D., Gujar, S., Faltings, B., Hui, P.: Localcoin: An ad-hoc payment scheme for areas with high connectivity. CoRR abs/1708.08086 (2017)

    Google Scholar 

  9. ConsenSys: Mythril. https://github.com/ConsenSys/mythril (2017)

  10. Dasgupta, A., Ghosh, A.: Crowdsourced judgement elicitation with endogenous proficiency. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 319–330 (2013)

    Google Scholar 

  11. Eberhardt, J., Tai, S.: On or off the blockchain? insights on off-chaining computation and data. In: De Paoli, F., Schulte, S., Broch Johnsen, E. (eds.) ESOCC 2017. LNCS, vol. 10465, pp. 3–15. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67262-5_1

    Chapter  Google Scholar 

  12. Ethereum: Remix. https://github.com/ethereum/remix (2016)

  13. Faltings, B., Li, J.J., Jurca, R.: Incentive mechanisms for community sensing. IEEE Trans. Comput. 63(1), 115–128 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Han, G., Liu, L., Chan, S., Yu, R., Yang, Y.: Hysense: a hybrid mobile crowdsensing framework for sensing opportunities compensation under dynamic coverage constraint. IEEE Commun. Mag. 55(3), 93–99 (2017)

    Article  Google Scholar 

  15. Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random generation from one-way functions. In: Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing, pp. 12–24. ACM (1989)

    Google Scholar 

  16. Jurca, R., Faltings, B.: An incentive compatible reputation mechanism. In: IEEE International Conference on E-Commerce, CEC 2003, pp. 285–292. IEEE Computer Society (2003)

    Google Scholar 

  17. Jurca, R., Faltings, B.: Robust incentive-compatible feedback payments. In: Fasli, M., Shehory, O. (eds.) AMEC/TADA -2006. LNCS (LNAI), vol. 4452, pp. 204–218. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72502-2_15

    Chapter  Google Scholar 

  18. Lambert, N., Shoham, Y.: Truthful surveys. In: Papadimitriou, C., Zhang, S. (eds.) WINE 2008. LNCS, vol. 5385, pp. 154–165. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92185-1_23

    Chapter  Google Scholar 

  19. Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts smarter. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 254–269. ACM (2016)

    Google Scholar 

  20. Miller, N., Resnick, P., Zeckhauser, R.: Eliciting informative feedback: the peer-prediction method. Manag. Sci. 51(9), 1359–1373 (2005)

    Article  Google Scholar 

  21. Prelec, D.: A bayesian truth serum for subjective data. Science 306(5695), 462–466 (2004)

    Article  Google Scholar 

  22. Ra, M.R., Liu, B., Porta, T.L., Govindan, R.: Medusa: A programming framework for crowd-sensing applications. In: MobiSys. ACM (2012)

    Google Scholar 

  23. Radanovic, G., Faltings, B.: A robust Bayesian truth serum for non-binary signals. In: Proceedings of the 27th AAAI Conference on Artificial Intelligence (AAAI 2013), pp. 833–839. AAAI Press (2013)

    Google Scholar 

  24. Radanovic, G., Faltings, B.: Incentives for truthful information elicitation of continuous signals. In: Proceedings of the 28th AAAI Conference on Artificial Intelligence, pp. 770–776. AAAI Press (2014)

    Google Scholar 

  25. Radanovic, G., Faltings, B.: Incentive schemes for participatory sensing. In: Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems, pp. 1081–1089. ACM (2015)

    Google Scholar 

  26. Radanovic, G., Faltings, B., Jurca, R.: Incentives for effort in crowdsourcing using the peer truth serum. ACM Trans. Intell. Syst. Technol. (TIST) 7(4), 48 (2016)

    Google Scholar 

  27. Riley, B.: Minimum truth serums with optional predictions. In: Proceedings of the 4th Workshop on Social Computing and User Generated Content (2014)

    Google Scholar 

  28. Szabo, N.: Formalizing and securing relationships on public networks. First Monday 2(9) (1997)

    Google Scholar 

  29. Tikhomirov, S., Voskresenskaya, E., Ivanitskiy, I., Takhaviev, R., Marchenko, E., Alexandrov, Y.: Smartcheck: static analysis of ethereum smart contracts. In: 2018 IEEE/ACM 1st International Workshop on Emerging Trends in Software Engineering for Blockchain (WETSEB), pp. 9–16. IEEE, ACM (2018)

    Google Scholar 

  30. Tsankov, P., Dan, A., Drachsler-Cohen, D., Gervais, A., Buenzli, F., Vechev, M.: Securify: practical security analysis of smart contracts. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, pp. 67–82. ACM (2018)

    Google Scholar 

  31. Wang, L., Zhang, D., Yan, Z., Xiong, H., Xie, B.: effsense: a novel mobile crowd-sensing framework for energy-efficient and cost-effective data uploading. IEEE Trans. Syst. Man Cybern. Syst. 45(12), 1549–1563 (2015)

    Article  Google Scholar 

  32. Witkowski, J., Parkes, D.C.: Peer prediction with private beliefs. In: Proceedings of the 1st Workshop on Social Computing and User Generated Content (2011)

    Google Scholar 

  33. Witkowski, J., Parkes, D.C.: Peer prediction without a common prior. In: Proceedings of the 13th ACM Conference on Electronic Commerce, pp. 964–981. ACM, ACM (2012)

    Google Scholar 

  34. Witkowski, J., Parkes, D.C.: A robust Bayesian truth serum for small populations. In: AAAI, vol. 12, pp. 1492–1498. AAAI Press (2012)

    Google Scholar 

  35. Wolberger, L., Mason, A., Capkun, S.: Platin - proof of location protocol on the blockchain (2018). https://platin.io/

  36. Xu, R., Chen, Y., Blasch, E., Chen, G.: Blendcac: a smart contract enabled decentralized capability-based access control mechanism for the iot. Computers 7(3), 39 (2018)

    Article  Google Scholar 

  37. Zhang, P., Chen, Y.: Elicitability and knowledge-free elicitation with peer prediction. In: Proceedings of the 2014 International Conference on Autonomous Agents and Multi-Agent Systems, pp. 245–252. IFAAMAS/ACM (2014)

    Google Scholar 

  38. Zhang, Y., Kasahara, S., Shen, Y., Jiang, X., Wan, J.: Smart contract-based access control for the internet of things. IEEE Internet Things J. 6(2), 1594–1605 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moin Hussain Moti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Moti, M.H., Chatzopoulos, D., Hui, P., Faltings, B., Gujar, S. (2020). Orthos: A Trustworthy AI Framework for Data Acquisition. In: Baroglio, C., Hubner, J.F., Winikoff, M. (eds) Engineering Multi-Agent Systems. EMAS 2020. Lecture Notes in Computer Science(), vol 12589. Springer, Cham. https://doi.org/10.1007/978-3-030-66534-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66534-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66533-3

  • Online ISBN: 978-3-030-66534-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics