Abstract
Information acquisition through crowdsensing with mobile agents is a popular way to collect data, especially in the context of smart cities where the deployment of dedicated data collectors is expensive and ineffective. It requires efficient information elicitation mechanisms to guarantee that the collected data are accurately acquired and reported. Such mechanisms can be implemented via smart contracts on blockchain to enable privacy and trust. In this work we develop Orthos, a blockchain-based trustworthy framework for spontaneous location-based crowdsensing queries without assuming any prior knowledge about them. We employ game-theoretic mechanisms to incentivize agents to report truthfully and ensure that the information is collected at the desired location while ensuring the privacy of the agents. We identify six necessary characteristics for information elicitation mechanisms to be applicable in spontaneous location-based settings and implement an existing state-of-the-art mechanism using smart contracts. Additionally, as location information is exogenous to these mechanisms, we design the Proof-of-Location protocol to ensure that agents gather the data at the desired locations. We examine the performance of Orthos on Rinkeby Ethereum testnet and conduct experiments with live audience.
In Greek, Orthos means correct and accurate.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
Keccak is a versatile cryptographic function. Best known as a hash function, it nevertheless can also be used for authentication, encryption and pseudo-random number generation. For more information, please refer to https://keccak.team/keccak.html.
- 6.
- 7.
- 8.
- 9.
- 10.
References
Abraham, M., Jevitha, K.P.: Runtime verification and vulnerability testing of smart contracts. In: Singh, M., Gupta, P.K., Tyagi, V., Flusser, J., Ören, T., Kashyap, R. (eds.) ICACDS 2019. CCIS, vol. 1046, pp. 333–342. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-9942-8_32
Benet, J.: Ipfs-content addressed, versioned, p2p file system. arXiv preprint arXiv:1407.3561 (2014)
Bogner, A., Chanson, M., Meeuw, A.: A decentralised sharing app running a smart contract on the ethereum blockchain. In: Proceedings of the 6th International Conference on the Internet of Things, pp. 177–178. ACM (2016)
Bulusu, N., Heidemann, J., Estrin, D.: GPS-less low-cost outdoor localization for very small devices. IEEE Pers. Commun. 7(5), 28–34 (2000)
Buterin, V., et al.: A next-generation smart contract and decentralized application platform. white paper (2014)
Čapkun, S., Hamdi, M., Hubaux, J.P.: GPS-free positioning in mobile ad hoc networks. Cluster Comput. 5(2), 157–167 (2002)
Chatzopoulos, D., Gujar, S., Faltings, B., Hui, P.: Privacy preserving and cost optimal mobile crowdsensing using smart contracts on blockchain. In: 2018 IEEE 15th International Conference on Mobile Ad Hoc and Sensor Systems (MASS), pp. 442–450. IEEE Computer Society (2018)
Chatzopoulos, D., Gujar, S., Faltings, B., Hui, P.: Localcoin: An ad-hoc payment scheme for areas with high connectivity. CoRR abs/1708.08086 (2017)
ConsenSys: Mythril. https://github.com/ConsenSys/mythril (2017)
Dasgupta, A., Ghosh, A.: Crowdsourced judgement elicitation with endogenous proficiency. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 319–330 (2013)
Eberhardt, J., Tai, S.: On or off the blockchain? insights on off-chaining computation and data. In: De Paoli, F., Schulte, S., Broch Johnsen, E. (eds.) ESOCC 2017. LNCS, vol. 10465, pp. 3–15. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67262-5_1
Ethereum: Remix. https://github.com/ethereum/remix (2016)
Faltings, B., Li, J.J., Jurca, R.: Incentive mechanisms for community sensing. IEEE Trans. Comput. 63(1), 115–128 (2014)
Han, G., Liu, L., Chan, S., Yu, R., Yang, Y.: Hysense: a hybrid mobile crowdsensing framework for sensing opportunities compensation under dynamic coverage constraint. IEEE Commun. Mag. 55(3), 93–99 (2017)
Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random generation from one-way functions. In: Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing, pp. 12–24. ACM (1989)
Jurca, R., Faltings, B.: An incentive compatible reputation mechanism. In: IEEE International Conference on E-Commerce, CEC 2003, pp. 285–292. IEEE Computer Society (2003)
Jurca, R., Faltings, B.: Robust incentive-compatible feedback payments. In: Fasli, M., Shehory, O. (eds.) AMEC/TADA -2006. LNCS (LNAI), vol. 4452, pp. 204–218. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72502-2_15
Lambert, N., Shoham, Y.: Truthful surveys. In: Papadimitriou, C., Zhang, S. (eds.) WINE 2008. LNCS, vol. 5385, pp. 154–165. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92185-1_23
Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts smarter. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 254–269. ACM (2016)
Miller, N., Resnick, P., Zeckhauser, R.: Eliciting informative feedback: the peer-prediction method. Manag. Sci. 51(9), 1359–1373 (2005)
Prelec, D.: A bayesian truth serum for subjective data. Science 306(5695), 462–466 (2004)
Ra, M.R., Liu, B., Porta, T.L., Govindan, R.: Medusa: A programming framework for crowd-sensing applications. In: MobiSys. ACM (2012)
Radanovic, G., Faltings, B.: A robust Bayesian truth serum for non-binary signals. In: Proceedings of the 27th AAAI Conference on Artificial Intelligence (AAAI 2013), pp. 833–839. AAAI Press (2013)
Radanovic, G., Faltings, B.: Incentives for truthful information elicitation of continuous signals. In: Proceedings of the 28th AAAI Conference on Artificial Intelligence, pp. 770–776. AAAI Press (2014)
Radanovic, G., Faltings, B.: Incentive schemes for participatory sensing. In: Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems, pp. 1081–1089. ACM (2015)
Radanovic, G., Faltings, B., Jurca, R.: Incentives for effort in crowdsourcing using the peer truth serum. ACM Trans. Intell. Syst. Technol. (TIST) 7(4), 48 (2016)
Riley, B.: Minimum truth serums with optional predictions. In: Proceedings of the 4th Workshop on Social Computing and User Generated Content (2014)
Szabo, N.: Formalizing and securing relationships on public networks. First Monday 2(9) (1997)
Tikhomirov, S., Voskresenskaya, E., Ivanitskiy, I., Takhaviev, R., Marchenko, E., Alexandrov, Y.: Smartcheck: static analysis of ethereum smart contracts. In: 2018 IEEE/ACM 1st International Workshop on Emerging Trends in Software Engineering for Blockchain (WETSEB), pp. 9–16. IEEE, ACM (2018)
Tsankov, P., Dan, A., Drachsler-Cohen, D., Gervais, A., Buenzli, F., Vechev, M.: Securify: practical security analysis of smart contracts. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, pp. 67–82. ACM (2018)
Wang, L., Zhang, D., Yan, Z., Xiong, H., Xie, B.: effsense: a novel mobile crowd-sensing framework for energy-efficient and cost-effective data uploading. IEEE Trans. Syst. Man Cybern. Syst. 45(12), 1549–1563 (2015)
Witkowski, J., Parkes, D.C.: Peer prediction with private beliefs. In: Proceedings of the 1st Workshop on Social Computing and User Generated Content (2011)
Witkowski, J., Parkes, D.C.: Peer prediction without a common prior. In: Proceedings of the 13th ACM Conference on Electronic Commerce, pp. 964–981. ACM, ACM (2012)
Witkowski, J., Parkes, D.C.: A robust Bayesian truth serum for small populations. In: AAAI, vol. 12, pp. 1492–1498. AAAI Press (2012)
Wolberger, L., Mason, A., Capkun, S.: Platin - proof of location protocol on the blockchain (2018). https://platin.io/
Xu, R., Chen, Y., Blasch, E., Chen, G.: Blendcac: a smart contract enabled decentralized capability-based access control mechanism for the iot. Computers 7(3), 39 (2018)
Zhang, P., Chen, Y.: Elicitability and knowledge-free elicitation with peer prediction. In: Proceedings of the 2014 International Conference on Autonomous Agents and Multi-Agent Systems, pp. 245–252. IFAAMAS/ACM (2014)
Zhang, Y., Kasahara, S., Shen, Y., Jiang, X., Wan, J.: Smart contract-based access control for the internet of things. IEEE Internet Things J. 6(2), 1594–1605 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Moti, M.H., Chatzopoulos, D., Hui, P., Faltings, B., Gujar, S. (2020). Orthos: A Trustworthy AI Framework for Data Acquisition. In: Baroglio, C., Hubner, J.F., Winikoff, M. (eds) Engineering Multi-Agent Systems. EMAS 2020. Lecture Notes in Computer Science(), vol 12589. Springer, Cham. https://doi.org/10.1007/978-3-030-66534-0_7
Download citation
DOI: https://doi.org/10.1007/978-3-030-66534-0_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-66533-3
Online ISBN: 978-3-030-66534-0
eBook Packages: Computer ScienceComputer Science (R0)