Unsupervised Learning of Video Representations via Dense Trajectory Clustering | SpringerLink
Skip to main content

Unsupervised Learning of Video Representations via Dense Trajectory Clustering

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 Workshops (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12536))

Included in the following conference series:

Abstract

This paper addresses the task of unsupervised learning of representations for action recognition in videos. Previous works proposed to utilize future prediction, or other domain-specific objectives to train a network, but achieved only limited success. In contrast, in the relevant field of image representation learning, simpler, discrimination-based methods have recently bridged the gap to fully-supervised performance. We first propose to adapt two top performing objectives in this class - instance recognition and local aggregation, to the video domain. In particular, the latter approach iterates between clustering the videos in the feature space of a network and updating it to respect the cluster with a non-parametric classification loss. We observe promising performance, but qualitative analysis shows that the learned representations fail to capture motion patterns, grouping the videos based on appearance. To mitigate this issue, we turn to the heuristic-based IDT descriptors, that were manually designed to encode motion patterns in videos. We form the clusters in the IDT space, using these descriptors as a an unsupervised prior in the iterative local aggregation algorithm. Our experiments demonstrates that this approach outperform prior work on UCF101 and HMDB51 action recognition benchmarks. We also qualitatively analyze the learned representations and show that they successfully capture video dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 132–149 (2018)

    Google Scholar 

  2. Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the kinetics dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6299–6308 (2017)

    Google Scholar 

  3. Chen, W.Y., Liu, Y.C., Kira, Z., Wang, Y.C.F., Huang, J.B.: A closer look at few-shot classification. In: ICLR (2019)

    Google Scholar 

  4. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), Vol. 1, pp. 886–893. IEEE (2005)

    Google Scholar 

  5. Dalal, N., Triggs, B., Schmid, C.: Human detection using oriented histograms of flow and appearance. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 428–441. Springer, Heidelberg (2006). https://doi.org/10.1007/11744047_33

    Chapter  Google Scholar 

  6. Doersch, C., Gupta, A., Efros, A.A.: Unsupervised visual representation learning by context prediction. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1422–1430 (2015)

    Google Scholar 

  7. Donahue, J., Krähenbühl, P., Darrell, T.: Adversarial feature learning. In: ICLR (2016)

    Google Scholar 

  8. Dosovitskiy, A., Springenberg, J.T., Riedmiller, M., Brox, T.: Discriminative unsupervised feature learning with convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 766–774 (2014)

    Google Scholar 

  9. Fernando, B., Bilen, H., Gavves, E., Gould, S.: Self-supervised video representation learning with odd-one-out networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3636–3645 (2017)

    Google Scholar 

  10. Gan, C., Gong, B., Liu, K., Su, H., Guibas, L.J.: Geometry guided convolutional neural networks for self-supervised video representation learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5589–5597 (2018)

    Google Scholar 

  11. Gidaris, S., Singh, P., Komodakis, N.: Unsupervised representation learning by predicting image rotations. In: ICLR (2018)

    Google Scholar 

  12. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  13. Han, T., Xie, W., Zisserman, A.: Video representation learning by dense predictive coding. In: Proceedings of the IEEE International Conference on Computer Vision Workshops (2019)

    Google Scholar 

  14. Hara, K., Kataoka, H., Satoh, Y.: Can spatiotemporal 3D CNNs retrace the history of 2D CNNs and ImageNet? In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6546–6555 (2018)

    Google Scholar 

  15. He, K., Girshick, R., Dollár, P.: Rethinking imageNet pre-training. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4918–4927 (2019)

    Google Scholar 

  16. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  17. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)

  18. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    Article  MathSciNet  Google Scholar 

  19. Jing, L., Yang, X., Liu, J., Tian, Y.: Self-supervised spatiotemporal feature learning via video rotation prediction. arXiv preprint arXiv:1811.11387 (2018)

  20. Kim, D., Cho, D., Kweon, I.S.: Self-supervised video representation learning with space-time cubic puzzles. In: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, pp. 8545–8552 (2019)

    Google Scholar 

  21. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: ICLR (2014)

    Google Scholar 

  22. Koniusz, P., Zhang, H., Porikli, F.: A deeper look at power normalizations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5774–5783 (2018)

    Google Scholar 

  23. Kuehne, H., Jhuang, H., Garrote, E., Poggio, T., Serre, T.: HMDB: a large video database for human motion recognition. In: International Conference on Computer Vision, pp. 2556–2563. IEEE (2011)

    Google Scholar 

  24. Lee, H., Grosse, R., Ranganath, R., Ng, A.Y.: Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 609–616 (2009)

    Google Scholar 

  25. Lee, H.Y., Huang, J.B., Singh, M., Yang, M.H.: Unsupervised representation learning by sorting sequences. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 667–676 (2017)

    Google Scholar 

  26. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  27. Misra, I., Zitnick, C.L., Hebert, M.: Shuffle and learn: unsupervised learning using temporal order verification. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 527–544. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_32

    Chapter  Google Scholar 

  28. Mobahi, H., Collobert, R., Weston, J.: Deep learning from temporal coherence in video. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 737–744 (2009)

    Google Scholar 

  29. Noroozi, M., Favaro, P.: Unsupervised learning of visual representations by solving jigsaw puzzles. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 69–84. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_5

    Chapter  Google Scholar 

  30. Oord, A.v.d., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018)

  31. Perronnin, F., Sánchez, J., Mensink, T.: Improving the fisher kernel for large-scale image classification. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 143–156. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_11

    Chapter  Google Scholar 

  32. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. In: Advances in Neural Information Processing Systems, pp. 568–576 (2014)

    Google Scholar 

  33. Soomro, K., Zamir, A.R., Shah, M.: UCF101: a dataset of 101 human actions classes from videos in the wild. arXiv preprint arXiv:1212.0402 (2012)

  34. Srivastava, N., Mansimov, E., Salakhudinov, R.: Unsupervised learning of video representations using LSTMs. In: International Conference on Machine Learning, pp. 843–852 (2015)

    Google Scholar 

  35. Sun, C., Baradel, F., Murphy, K., Schmid, C.: Contrastive bidirectional transformer for temporal representation learning. arXiv preprint arXiv:1906.05743 (2019)

  36. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3D convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4489–4497 (2015)

    Google Scholar 

  37. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Deep image prior. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9446–9454 (2018)

    Google Scholar 

  38. Vondrick, C., Pirsiavash, H., Torralba, A.: Generating videos with scene dynamics. In: Advances in Neural Information Processing Systems, pp. 613–621 (2016)

    Google Scholar 

  39. Vondrick, C., Shrivastava, A., Fathi, A., Guadarrama, S., Murphy, K.: Tracking emerges by colorizing videos. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 391–408 (2018)

    Google Scholar 

  40. Wang, F., Xiang, X., Cheng, J., Yuille, A.L.: Normface: L2 hypersphere embedding for face verification. In: Proceedings of the 25th ACM International Conference on Multimedia, pp. 1041–1049 (2017)

    Google Scholar 

  41. Wang, H., Kläser, A., Schmid, C., Liu, C.L.: Dense trajectories and motion boundary descriptors for action recognition. Int. J. Comput. Vision 103(1), 60–79 (2013)

    Article  MathSciNet  Google Scholar 

  42. Wang, H., Schmid, C.: Action recognition with improved trajectories. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3551–3558 (2013)

    Google Scholar 

  43. Wang, J., Jiao, J., Bao, L., He, S., Liu, Y., Liu, W.: Self-supervised spatio-temporal representation learning for videos by predicting motion and appearance statistics. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4006–4015 (2019)

    Google Scholar 

  44. Wang, L., Koniusz, P., Huynh, D.Q.: Hallucinating IDT descriptors and I3D optical flow features for action recognition with CNNs. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 8698–8708 (2019)

    Google Scholar 

  45. Weinberger, K., Dasgupta, A., Langford, J., Smola, A., Attenberg, J.: Feature hashing for large scale multitask learning. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 1113–1120 (2009)

    Google Scholar 

  46. Wu, Z., Xiong, Y., Yu, S.X., Lin, D.: Unsupervised feature learning via non-parametric instance discrimination. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3733–3742 (2018)

    Google Scholar 

  47. Xie, S., Sun, C., Huang, J., Tu, Z., Murphy, K.: Rethinking spatiotemporal feature learning for video understanding. In: ECCV (2018)

    Google Scholar 

  48. Zhang, R., Isola, P., Efros, A.A.: Colorful image colorization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 649–666. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_40

    Chapter  Google Scholar 

  49. Zhuang, C., Zhai, A.L., Yamins, D.: Local aggregation for unsupervised learning of visual embeddings. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 6002–6012 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Tokmakov .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 127 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tokmakov, P., Hebert, M., Schmid, C. (2020). Unsupervised Learning of Video Representations via Dense Trajectory Clustering. In: Bartoli, A., Fusiello, A. (eds) Computer Vision – ECCV 2020 Workshops. ECCV 2020. Lecture Notes in Computer Science(), vol 12536. Springer, Cham. https://doi.org/10.1007/978-3-030-66096-3_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66096-3_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66095-6

  • Online ISBN: 978-3-030-66096-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics