Superimposition: Augmenting Machine Learning Outputs with Conceptual Models for Explainable AI | SpringerLink
Skip to main content

Superimposition: Augmenting Machine Learning Outputs with Conceptual Models for Explainable AI

  • Conference paper
  • First Online:
Advances in Conceptual Modeling (ER 2020)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 12584))

Included in the following conference series:

Abstract

Machine learning has become almost synonymous with Artificial Intelligence (AI). However, it has many challenges with one of the most important being explainable AI; that is, providing human-understandable accounts of why a machine learning model produces specific outputs. To address this challenge, we propose superimposition as a concept which uses conceptual models to improve explainability by mapping the features that are important to a machine learning model’s decision outcomes to a conceptual model of an application domain. Superimposition is a design method for supplementing machine learning models with structural elements that are used by humans to reason about reality and generate explanations. To illustrate the potential of superimposition, we present the method and apply it to a churn prediction problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.kaggle.com/blastchar/telco-customer-churn.

References

  1. Marr, B.: The top 10 AI and machine learning use cases everyone should know about. Forbes (2016)

    Google Scholar 

  2. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  3. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)

    Article  Google Scholar 

  4. Maass, W., Parsons, J., Purao, S., Storey, V.C., Woo, C.: Data-driven meets theory-driven research in the era of big data: opportunities and challenges for information systems research. J. Assoc. Inf. Syst. 19, 1253–1273 (2018)

    Google Scholar 

  5. Chen, H., Chiang, R.H., Storey, V.C.: Business intelligence and analytics: from big data to big impact. MIS Q. 36, 1165–1188 (2012)

    Article  Google Scholar 

  6. Davenport, T., Harris, J.: Competing on Analytics: Updated, with a New Introduction: The New Science of Winning. Harvard Business Press, Cambridge (2017)

    Google Scholar 

  7. Khatri, V., Samuel, B.: Analytics for managerial work. Commun. ACM 62, 100–108 (2019)

    Article  Google Scholar 

  8. Akbilgic, O., Davis, R.L.: The promise of machine learning: when will it be delivered? J. Cardiac Fail. 25, 484–485 (2019)

    Article  Google Scholar 

  9. Bailetti, T., Gad, M., Shah, A.: Intrusion learning: an overview of an emergent discipline. Technol. Innov. Manage. Rev. 6 (2016)

    Google Scholar 

  10. Holzinger, A., Kieseberg, P., Weippl, E., Tjoa, A.M.: Current advances, trends and challenges of machine learning and knowledge extraction: from machine learning to explainable AI. In: Holzinger, A., Kieseberg, P., Tjoa, A.M., Weippl, E. (eds.) CD-MAKE 2018. LNCS, vol. 11015, pp. 1–8. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99740-7_1

    Chapter  Google Scholar 

  11. Ransbotham, S., Kiron, D., Prentice, P.K.: Beyond the hype: the hard work behind analytics success. MIT Sloan Manage. Rev. 57, 3–15 (2016)

    Google Scholar 

  12. Sun, T.Q., Medaglia, R.: Mapping the challenges of artificial intelligence in the public sector: evidence from public healthcare. Govern. Inf. Q. 36, 368–383 (2019)

    Article  Google Scholar 

  13. Castelvecchi, D.: Can we open the black box of AI? Nat. News 538, 20 (2016)

    Article  Google Scholar 

  14. Gunning, D.: Explainable artificial intelligence (XAI). Defense Advanced Research Projects agency. Defense Advanced Research Projects Agency (DARPA), nd Web, 2 (2016)

    Google Scholar 

  15. Gunning, D., Aha, D.W.: DARPA’s explainable artificial intelligence program. AI Mag. 40, 44–58 (2019)

    Article  Google Scholar 

  16. Wachter, S., Mittelstadt, B., Floridi, L.: Why a right to explanation of automated decision-making does not exist in the general data protection regulation. Int. Data Priv. Law 7, 76–99 (2017)

    Article  Google Scholar 

  17. Bubenko, J.A.: On the role of ‘understanding models’ in conceptual schema design. In: Presented at the Fifth International Conference on Very Large Data Bases 1979 (1979)

    Google Scholar 

  18. Mylopoulos, J.: Information modeling in the time of the revolution. Inf. Syst. 23, 127–155 (1998)

    Article  Google Scholar 

  19. Pastor, O.: Conceptual modeling of life: beyond the homo sapiens. In: Comyn-Wattiau, I., Tanaka, K., Song, I.-Y., Yamamoto, S., Saeki, M. (eds.) ER 2016. LNCS, vol. 9974, pp. 18–31. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46397-1_2

    Chapter  Google Scholar 

  20. Wand, Y., Weber, R.: Research commentary: information systems and conceptual modeling - a research agenda. Inf. Syst. Res. 13, 363–376 (2002)

    Article  Google Scholar 

  21. Lukyanenko, R., Castellanos, A., Parsons, J., Chiarini Tremblay, M., Storey, V.C.: Using conceptual modeling to support machine learning. In: Cappiello, C., Ruiz, M. (eds.) Information Systems Engineering in Responsible Information Systems, pp. 170–181. Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-21297-1_15

    Chapter  Google Scholar 

  22. Nalchigar, S., Yu, E.: Conceptual modeling for business analytics: a framework and potential benefits. Presented at the 2017 IEEE 19th Conference on Business Informatics (CBI) (2017)

    Google Scholar 

  23. Crevier, D.: AI: The Tumultuous History of the Search for Artificial Intelligence. Basic Books, New York (1993)

    Google Scholar 

  24. Cerf, V.G.: AI is not an excuse! Commun. ACM 62, 7–9 (2019)

    Google Scholar 

  25. Ribeiro, M.T., Singh, S., Guestrin, C.: Why should i trust you?: explaining the predictions of any classifier. Presented at the Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2016)

    Google Scholar 

  26. Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Advances in Neural Information Processing Systems, pp. 4765–4774 (2017)

    Google Scholar 

  27. Martens, D., Provost, F.: Explaining data-driven document classifications. Mis Q. 38, 73–100 (2014)

    Article  Google Scholar 

  28. Rai, A.: Explainable AI: from black box to glass box. J. Acad. Mark. Sci. 48, 137–141 (2020)

    Article  Google Scholar 

  29. Henelius, A., Puolamäki, K., Boström, H., Asker, L., Papapetrou, P.: A peek into the black box: exploring classifiers by randomization. Data Min. Knowl. Discov. 28, 1503–1529 (2014). https://doi.org/10.1007/s10618-014-0368-8

    Article  MathSciNet  Google Scholar 

  30. Harnad, S.: To cognize is to categorize: cognition is categorization. Presented at the, Amsterdam (2005)

    Google Scholar 

  31. Murphy, G.: The Big Book of Concepts. MIT Press, Cambridge (2004)

    Google Scholar 

  32. Palmeri, T.J., Blalock, C.: The role of background knowledge in speeded perceptual categorization. Cognition 77, B45–B57 (2000)

    Article  Google Scholar 

  33. Parsons, J., Wand, Y.: Extending classification principles from information modeling to other disciplines. J. Assoc. Inf. Syst. 14, 2 (2012)

    Google Scholar 

  34. Collins, A.M., Quillian, M.R.: Retrieval time from semantic memory. J. Verbal Learn. Verbal Behav. 8, 240–247 (1969)

    Article  Google Scholar 

  35. Hutchinson, J., Lockhead, G.: Similarity as distance: a structural principle for semantic memory. J. Exp. Psychol. Hum. Learn. Mem. 3, 660 (1977)

    Article  Google Scholar 

  36. Burton-Jones, A., Weber, R.: Building conceptual modeling on the foundation of ontology. In: Computing handbook: information systems and information technology, Boca Raton, FL, USA, pp. 15.1–15.24 (2014)

    Google Scholar 

  37. Borgida, A.: Features of languages for the development of information systems at the conceptual level. IEEE Softw. 2, 63 (1985)

    Article  Google Scholar 

  38. Parsons, J., Wand, Y.: Choosing classes in conceptual modeling. Commun. ACM 40, 63–69 (1997)

    Article  Google Scholar 

  39. Sowa, J.F.: Top-level ontological categories. Int. J. Hum Comput Stud. 43, 669–685 (1995)

    Article  Google Scholar 

  40. Chen, P.: The entity-relationship model - toward a unified view of data. ACM Trans. Database Syst. 1, 9–36 (1976)

    Article  Google Scholar 

  41. Recker, J., Lukyanenko, R., Jabbari, M.A., Samuel, B.M., Castellanos, A.: From representation to mediation: a new agenda for conceptual modeling research in a digital world. MIS Q. (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Lukyanenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lukyanenko, R., Castellanos, A., Storey, V.C., Castillo, A., Tremblay, M.C., Parsons, J. (2020). Superimposition: Augmenting Machine Learning Outputs with Conceptual Models for Explainable AI. In: Grossmann, G., Ram, S. (eds) Advances in Conceptual Modeling. ER 2020. Lecture Notes in Computer Science(), vol 12584. Springer, Cham. https://doi.org/10.1007/978-3-030-65847-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65847-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65846-5

  • Online ISBN: 978-3-030-65847-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics