The NISQ Analyzer: Automating the Selection of Quantum Computers for Quantum Algorithms | SpringerLink
Skip to main content

The NISQ Analyzer: Automating the Selection of Quantum Computers for Quantum Algorithms

  • Conference paper
  • First Online:
Service-Oriented Computing (SummerSOC 2020)

Abstract

Quantum computing can enable a variety of breakthroughs in research and industry in the future. Although some quantum algorithms already exist that show a theoretical speedup compared to the best known classical algorithms, the implementation and execution of these algorithms come with several challenges. The input data determines, for example, the required number of qubits and gates of a quantum algorithm. A quantum algorithm implementation also depends on the used Software Development Kit which restricts the set of usable quantum computers. Because of the limited capabilities of current quantum computers, choosing an appropriate one to execute a certain implementation for a given input is a difficult challenge that requires immense mathematical knowledge about the implemented quantum algorithm as well as technical knowledge about the used Software Development Kits. In this paper, we present a concept for the automated analysis and selection of implementations of quantum algorithms and appropriate quantum computers that can execute a selected implementation with a certain input data. The practical feasibility of the concept is demonstrated by the prototypical implementation of a tool that we call NISQ Analyzer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.ibm.com.

  2. 2.

    https://www.rigetti.com.

  3. 3.

    https://www.ibm.com/blogs/research/2020/09/ibm-quantum-roadmap/.

  4. 4.

    https://ionq.com/news/october-01-2020-most-powerful-quantum-computer.

  5. 5.

    https://qiskit.org.

  6. 6.

    http://docs.rigetti.com/en/stable/.

  7. 7.

    https://quantum-computing.ibm.com.

  8. 8.

    https://github.com/UST-QuAntiL/nisq-analyzer.

  9. 9.

    https://www.swi-prolog.org.

  10. 10.

    https://github.com/UST-QuAntiL/qiskit-service.

  11. 11.

    https://github.com/Qiskit.

  12. 12.

    https://qiskit.org/documentation/stubs/qiskit.compiler.transpile.html.

  13. 13.

    https://python-rq.org.

  14. 14.

    https://github.com/UST-QuAntiL/nisq-analyzer-content.

  15. 15.

    https://qiskit.org/documentation/apidoc/qiskit.aqua.algorithms.html.

  16. 16.

    https://quantum-computing.ibm.com/docs/manage/account/ibmq.

  17. 17.

    https://qiskit.org/documentation/stubs/qiskit.aqua.components.oracles.TruthTableOracle.html.

  18. 18.

    https://quantum-circuit.com/app_details/HYLMtcuK6b7uaphC7.

  19. 19.

    https://planqk.de/en/.

References

  1. Aharonov, D., Van Dam, W., Kempe, J., Landau, Z., Lloyd, S., Regev, O.: Adiabatic quantum computation is equivalent to standard quantum computation. SIAM Rev. 50(4), 755–787 (2008)

    Article  MathSciNet  Google Scholar 

  2. Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J.C., Barends, R., et al.: Quantum supremacy using a programmable superconducting processor. Nature 574(7779), 505–510 (2019)

    Article  Google Scholar 

  3. Beauregard, S.: Circuit for Shor’s algorithm using 2n+3 qubits. Quant. Inf. Comput. 3(2), 175–185 (2003)

    MathSciNet  MATH  Google Scholar 

  4. Benedetti, M., Garcia-Pintos, D., Perdomo, O., Leyton-Ortega, V., Nam, Y., Perdomo-Ortiz, A.: A generative modeling approach for benchmarking and training shallow quantum circuits. NPJ Quant. Inf. 5(1), 45 (2019)

    Google Scholar 

  5. Bishop, L.S., Bravyi, S., Cross, A., Gambetta, J.M., Smolin, J.: Quantum volume. Technical report (2017)

    Google Scholar 

  6. Brahimi, L., Bellatreche, L., Ouhammou, Y.: A recommender system for DBMS selection based on a test data repository. In: Pokorný, J., Ivanović, M., Thalheim, B., Šaloun, P. (eds.) ADBIS 2016. LNCS, vol. 9809, pp. 166–180. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44039-2_12

    Chapter  Google Scholar 

  7. Chuang, I.L., Yamamoto, Y.: Creation of a persistent quantum bit using error correction. Phys. Rev. A 55, 114–127 (1997)

    Article  Google Scholar 

  8. Cowtan, A., Dilkes, S., Duncan, R., Krajenbrink, A., Simmons, W., Sivarajah, S.: On the qubit routing problem (2019)

    Google Scholar 

  9. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 212–219 (1996)

    Google Scholar 

  10. Han, S.M., Hassan, M.M., Yoon, C.W., Huh, E.N.: Efficient service recommendation system for cloud computing market. In: Proceedings of the 2nd International Conference on Interaction Sciences: Information Technology, Culture and Human, pp. 839–845 (2009)

    Google Scholar 

  11. Häner, T., Roetteler, M., Svore, K.M.: Factoring using 2n+2 qubits with toffoli based modular multiplication. Quant. Inf. Comput. 18(7–8), 673–684 (2017)

    MathSciNet  Google Scholar 

  12. IBMQ team: 15-qubit backend: IBM Q 16 Melbourne backend specification V2.3.1 (2020). https://quantum-computing.ibm.com

  13. IBMQ team: 5-qubit backend: IBM Q 5 Yorktown backend specification V2.1.0 (2020). https://quantum-computing.ibm.com

  14. Abhijith, J., et al.: Quantum algorithm implementations for beginners (2018)

    Google Scholar 

  15. JavadiAbhari, A., et al.: Scaffcc: a framework for compilation and analysis of quantum computing programs. In: Proceedings of the 11th ACM Conference on Computing Frontiers. CF 2014. Association for Computing Machinery, New York (2014)

    Google Scholar 

  16. LaRose, R.: Overview and comparison of gate level quantum software platforms. Quantum 3, 130 (2019)

    Article  Google Scholar 

  17. Leymann, F., Barzen, J.: The bitter truth about gate-based quantum algorithms in the NISQ era. Quant. Sci. Technol. 5, 1–28 (2020)

    Google Scholar 

  18. Leymann, F., Barzen, J., Falkenthal, M.: Towards a platform for sharing quantum software. In: Proceedings of the 13th Advanced Summer School on Service Oriented Computing, pp. 70–74. IBM Technical report, IBM Research Division (2019)

    Google Scholar 

  19. Leymann, F., Barzen, J., Falkenthal, M., Vietz, D., Weder, B., Wild, K.: Quantum in the cloud: application potentials and research opportunities. In: Proceedings of the 10th International Conference on Cloud Computing and Services Science. SciTePress (2020)

    Google Scholar 

  20. Manikrao, U.S., Prabhakar, T.V.: Dynamic selection of web services with recommendation system. In: International Conference on Next Generation Web Services Practices (NWeSP 2005), p. 5 pp. (2005)

    Google Scholar 

  21. Masood, S., Soo, A.: A rule based expert system for rapid prototyping system selection. Robot. Comput. Integr. Manuf. 18(3–4), 267–274 (2002)

    Article  Google Scholar 

  22. McCaskey, A.J., Lyakh, D., Dumitrescu, E., Powers, S., Humble, T.S.: XACC: a system-level software infrastructure for heterogeneous quantum-classical computing. Quant. Sci. Technol. 5, 1–17 (2020)

    Google Scholar 

  23. Moll, N., et al.: Quantum optimization using variational algorithms on near-term quantum devices. Quant. Sci. Technol. 3(3), 030503 (2018)

    Article  Google Scholar 

  24. Nannicini, G.: An introduction to quantum computing, without the physics (2017)

    Google Scholar 

  25. National Academies of Sciences: Engineering, and Medicine: Quantum Computing: Progress and Prospects. The National Academies Press, Washington, DC (2019)

    Google Scholar 

  26. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, 10th edn. Cambridge University Press, Cambridge (2011)

    Google Scholar 

  27. O’Brien, T.E., Tarasinski, B., Terhal, B.M.: Quantum phase estimation of multiple eigenvalues for small-scale (noisy) experiments. New J. Phys. 21(2), 1–43 (2019)

    MathSciNet  Google Scholar 

  28. Peruzzo, A., et al.: A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5(1) (2014)

    Google Scholar 

  29. Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018)

    Article  Google Scholar 

  30. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001)

    Article  Google Scholar 

  31. Rieffel, E., Polak, W.: An introduction to quantum computing for non-physicists. ACM Comput. Surv. 32(3), 300–335 (2000)

    Google Scholar 

  32. Rieffel, E., Polak, W.: Quantum Computing: A Gentle Introduction. 1st edn. The MIT Press, Cambridge (2011)

    Google Scholar 

  33. Sete, E.A., Zeng, W.J., Rigetti, C.T.: A functional architecture for scalable quantum computing. In: IEEE International Conference on Rebooting Computing, pp. 1–6 (2016)

    Google Scholar 

  34. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    Google Scholar 

  35. Simon, D.R.: On the power of quantum computation. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, SFCS 1994, pp. 116–123. IEEE Computer Society, USA (1994)

    Google Scholar 

  36. Siraichi, M.Y., Santos, V.F., Collange, S., Quintão Pereira, F.M.: Qubit allocation. In: CGO 2018 - International Symposium on Code Generation and Optimization, pp. 1–12 (2018)

    Google Scholar 

  37. Sivarajah, S., Dilkes, S., Cowtan, A., Simmons, W., Edgington, A., Duncan, R.: t\(|\)ket\(\rangle \): a retargetable compiler for NISQ devices. Quant. Sci. Technol. (2020)

    Google Scholar 

  38. Steiger, D.S., Häner, T., Troyer, M.: ProjectQ: an open source software framework for quantum computing. Quantum 2, 49 (2018)

    Article  Google Scholar 

  39. Strauch, S., Andrikopoulos, V., Bachmann, T., Karastoyanova, D., Passow, S., Vukojevic-Haupt, K.: Decision support for the migration of the application database layer to the cloud. In: 2013 IEEE 5th International Conference on Cloud Computing Technology and Science, vol. 1, pp. 639–646. IEEE (2013)

    Google Scholar 

  40. Suchara, M., Kubiatowicz, J., Faruque, A., Chong, F.T., Lai, C.Y., Paz, G.: QuRE: the quantum resource estimator toolbox. In: IEEE 31st International Conference on Computer Design (ICCD), pp. 419–426. IEEE (2013)

    Google Scholar 

  41. Tannu, S.S., Qureshi, M.K.: Not all qubits are created equal: a case for variability-aware policies for nisq-era quantum computers. In: Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS 2019, pp. 987–999. Association for Computing Machinery, New York (2019)

    Google Scholar 

  42. Wild, K., Breitenbücher, U., Harzenetter, L., Leymann, F., Vietz, D., Zimmermann, M.: TOSCA4QC: two modeling styles for TOSCA to automate the deployment and orchestration of quantum applications. In: 2020 IEEE 24th International Enterprise Distributed Object Computing Conference (EDOC). IEEE Computer Society (2020)

    Google Scholar 

  43. Zhang, M., Ranjan, R., Nepal, S., Menzel, M., Haller, A.: A declarative recommender system for cloud infrastructure services selection. In: Vanmechelen, K., Altmann, J., Rana, O.F. (eds.) GECON 2012. LNCS, vol. 7714, pp. 102–113. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35194-5_8

    Chapter  Google Scholar 

  44. Zimmermann, O., Grundler, J., Tai, S., Leymann, F.: Architectural decisions and patterns for transactional workflows in SOA. In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 81–93. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74974-5_7

    Chapter  Google Scholar 

  45. Zimmermann, O., Koehler, J., Leymann, F., Polley, R., Schuster, N.: Managing architectural decision models with dependency relations, integrity constraints, and production rules. J. Syst. Softw. 82(8), 1249–1267 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially funded by the BMWi project PlanQK (01MK20005N) and the DFG’s Excellence Initiative project SimTech (EXC 2075 - 390740016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie Salm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Salm, M., Barzen, J., Breitenbücher, U., Leymann, F., Weder, B., Wild, K. (2020). The NISQ Analyzer: Automating the Selection of Quantum Computers for Quantum Algorithms. In: Dustdar, S. (eds) Service-Oriented Computing. SummerSOC 2020. Communications in Computer and Information Science, vol 1310. Springer, Cham. https://doi.org/10.1007/978-3-030-64846-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64846-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64845-9

  • Online ISBN: 978-3-030-64846-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics