Abstract
Diabetes is a complex pathology both for the affected patients and for the medical specialists who follow them. Furthermore, since diabetes is a pathology with a high prevalence and incidence, it is essential to intervene effectively in therapeutic actions through the application of common guidelines. Therefore, in order to improve the management of the diabetic patient, the aim of the work is to define a Diagnostic Therapeutic Assistance Pathway (PDTA). A questionnaire-based approach is adopted for data collection from 136 patients at the Clinical Dermatology Unit of the University Hospital “Federico II”. In most cases (64%) the diagnosis was made by the General Practitioner, 15% of patients obtained the diagnosis at the ASL and 12% at the Polyclinic of Naples AOU “Federico II” and the remaining part from the diabetologist specialist. The second access is generally carried out at the “Federico II” AOU (66%), followed by the ASL (17%), by a doctor specialized in diabetology (12%) while no patient has turned to the General Practitioner for the treatment of diabetes. The final visit is carried out at the “Federico II” AOU in almost cases. The data obtained follow the Italian guidelines: the patients get the diagnosis from the Family Doctor and then they are addressed either to ASL or to diabetologists specialists. For the subsequent visits, most of them prefer to turn to the “Federico II” AOU, especially when they have complications associated with the diseases as they are followed in a more careful and satisfying manner.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
World Health Organization, et al.: Global health observatory (GHO) data. 2016. Child Mortal. Causes Death WHO Geneva (2016)
ISTAT: Annuario statistico italiano (Italian Statistical Yearbook). ISTAT Roma (2016)
European Association for Cardiovascular Prevention & Rehabilitation, Reiner, Z., Catapano, A.L., De Backer, G., Graham, I., Taskinen, M.-R., Wiklund, O., Agewall, S., Alegria, E., Chapman, M.J., Durrington, P., Erdine, S., Halcox, J., Hobbs, R., Kjekshus, J., Filardi, P.P., Riccardi, G., Storey, R.F., Wood, D.: ESC Committee for Practice Guidelines (CPG) 2008–2010 and 2010-2012 Committees: ESC/EAS Guidelines for the management of dyslipidaemias: the Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). Eur. Heart J. 32, 1769–1818 (2011). https://doi.org/10.1093/eurheartj/ehr158
Montecucco, F., Mach, F.: Common inflammatory mediators orchestrate pathophysiological processes in rheumatoid arthritis and atherosclerosis. Rheumatol. Oxf. Engl. 48, 11–22 (2009). https://doi.org/10.1093/rheumatology/ken395
Italiano, A.S.: ISTAT 2014 (2015)
Verrillo, A., de Teresa, A., Nunziata, G., Rucco, E.: Epidemiology of diabetes mellitus in an Italian rural community. Diabet. Metab. 9, 9–13 (1983)
Bianchi, C., Rossi, E., Miccoli, R.: Epidemiologia del diabete. In: Il diabete in Italia, pp. 13–19. Bononia University Press (2016)
Bonora, E., Kiechl, S., Willeit, J., Oberhollenzer, F., Egger, G., Meigs, J.B., Bonadonna, R.C., Muggeo, M.: Bruneck study: population-based incidence rates and risk factors for type 2 diabetes in white individuals: the Bruneck study. Diabetes 53, 1782–1789 (2004). https://doi.org/10.2337/diabetes.53.7.1782
Bruno, G., Novelli, G., Panero, F., Perotto, M., Monasterolo, F., Bona, G., Perino, A., Rabbone, I., Cavallo-Perin, P., Cerutti, F.: Piedmont study group for diabetes epidemiology: the incidence of type 1 diabetes is increasing in both children and young adults in Northern Italy: 1984-2004 temporal trends. Diabetologia 52, 2531–2535 (2009). https://doi.org/10.1007/s00125-009-1538-x
Improta, G., Ricciardi, C., Borrelli, A., D’alessandro, A., Verdoliva, C., Cesarelli, M.: The application of six sigma to reduce the pre-operative length of hospital stay at the hospital Antonio Cardarelli. Int. J. Lean Six Sigma (2019). https://doi.org/10.1108/IJLSS-02-2019-0014
Montella, E., Cicco, M.V.D., Ferraro, A., Centobelli, P., Raiola, E., Triassi, M., Improta, G.: The application of Lean Six Sigma methodology to reduce the risk of healthcare–associated infections in surgery departments. J. Eval. Clin. Pract. 23, 530–539 (2017). https://doi.org/10.1111/jep.12662
Improta, G., Balato, G., Romano, M., Ponsiglione, A.M., Raiola, E., Russo, M.A., Cuccaro, P., Santillo, L.C., Cesarelli, M.: Improving performances of the knee replacement surgery process by applying DMAIC principles. J. Eval. Clin. Pract. 23, 1401–1407 (2017). https://doi.org/10.1111/jep.12810
Ricciardi, C., Fiorillo, A., Valente, A.S., Borrelli, A., Verdoliva, C., Triassi, M., Improta, G.: Lean Six Sigma approach to reduce LOS through a diagnostic-therapeutic-assistance path at A.O.R.N. A. Cardarelli. TQM J. 31, 657–672 (2019). https://doi.org/10.1108/TQM-02-2019-0065
Ricciardi, C., Balato, G., Romano, M., Santalucia, I., Cesarelli, M., Improta, G.: Fast track surgery for knee replacement surgery: a lean six sigma approach. TQM J. (2020). https://doi.org/10.1108/TQM-06-2019-0159
Improta, G., Balato, G., Ricciardi, C., Russo, M.A., Santalucia, I., Triassi, M., Cesarelli, M.: Lean Six Sigma in healthcare: fast track surgery for patients undergoing prosthetic hip replacement surgery. TQM J. (2019)
Converso, G., Improta, G., Mignano, M., Santillo, L.C.: A simulation approach for agile production logic implementation in a hospital emergency unit. In: International Conference on Intelligent Software Methodologies, Tools, and Techniques, pp. 623–634. Springer (2015)
Improta, G., Russo, M.A., Triassi, M., Converso, G., Murino, T., Santillo, L.C.: Use of the AHP methodology in system dynamics: modelling and simulation for health technology assessments to determine the correct prosthesis choice for hernia diseases. Math. Biosci. 299, 19–27 (2018). https://doi.org/10.1016/j.mbs.2018.03.004
Improta, G., Perrone, A., Russo, M.A., Triassi, M.: Health technology assessment (HTA) of optoelectronic biosensors for oncology by analytic hierarchy process (AHP) and Likert scale. BMC Med. Res. Methodol. 19, 140 (2019)
Improta, G., Converso, G., Murino, T., Gallo, M., Perrone, A., Romano, M.: Analytic Hierarchy Process (AHP) in dynamic configuration as a tool for Health Technology Assessment (HTA): the Case of biosensing optoelectronics in oncology. Int. J. Inf. Technol. Decis. Mak. IJITDM. 18, 1533–1550 (2019)
Ricciardi, C., Amboni, M., De Santis, C., Improta, G., Volpe, G., Iuppariello, L., Ricciardelli, G., D’Addio, G., Vitale, C., Barone, P., Cesarelli, M.: The motion analysis “Schola Medica Salernitana“ Group, the biomedical engineering unit: using gait analysis’ parameters to classify parkinsonism: a data mining approach. Comput. Methods Programs Biomed. 180 (2019). https://doi.org/10.1016/j.cmpb.2019.105033
Improta, G., Mazzella, V., Vecchione, D., Santini, S., Triassi, M.: Fuzzy logic–based clinical decision support system for the evaluation of renal function in post-transplant patients. J. Eval. Clin. Pract. (2019). https://doi.org/10.1111/jep.13302
Santini, S., Pescape, A., Valente, A.S., Abate, V., Improta, G., Triassi, M., Ricchi, P., Filosa, A.: Using fuzzy logic for improving clinical daily-care of β-thalassemia patients. In: IEEE International Conference on Fuzzy System Institute of Electrical and Electronics Engineers Inc. (2017)
Ricciardi, C., Cuocolo, R., Cesarelli, G., Ugga, L., Improta, G., Solari, D., Romeo, V., Guadagno, E., Zuluaga Velez, M.C.L., Cesarelli, M.: Distinguishing Functional from Non-functional Pituitary Macroadenomas with a Machine Learning Analysis. Springer, Heidelberg (2020)
Improta, G., Guizzi, G., Ricciardi, C., Giordano, V., Ponsiglione, A.M., Converso, G., Triassi, M.: Agile six sigma in healthcare: case study at Santobono pediatric hospital. Int. J. Environ. Res. Public. Health. 17 (2020). https://doi.org/10.3390/ijerph17031052
Romano, M., Bifulco, P., Ponsiglione, A.M., Gargiulo, G.D., Amato, F., Cesarelli, M.: Evaluation of floatingline and foetal heart rate variability. Biomed. Signal Process. Control 39, 185–196 (2018). https://doi.org/10.1016/j.bspc.2017.07.018
Romano, M., D’Addio, G., Clemente, F., Ponsiglione, A.M., Improta, G., Cesarelli, M.: Symbolic dynamic and frequency analysis in foetal monitoring. In: 2014 IEEE International Symposium on Medical Measurements and Applications (MeMeA), pp. 1–5 (2014)
Improta, G., Ricciardi, C., Amato, F., D’Addio, G., Cesarelli, M., Romano, M.: Efficacy of machine learning in predicting the kind of delivery by cardiotocography. Springer (2020)
Stanzione, A., Ricciardi, C., Cuocolo, R., Romeo, V., Petrone, J., Sarnataro, M., Mainenti, P.P., Improta, G., De Rosa, F., Insabato, L., Brunetti, A., Maurea, S.: MRI Radiomics for the prediction of Fuhrman grade in clear cell renal cell carcinoma: a machine learning exploratory study. J. Digit. Imaging. (2020). https://doi.org/10.1007/s10278-020-00336-y
Ricciardi, C., Cantoni, V., Improta, G., Iuppariello, L., Latessa, I., Cesarelli, M., Triassi, M., Cuocolo, A.: Application of data mining in a cohort of Italian subjects undergoing myocardial perfusion imaging at an academic medical center. Comput. Methods Programs Biomed. 189, 105343–105349 (2020). https://doi.org/10.1016/j.cmpb.2020.105343
Improta, G., Ricciardi, C., Cesarelli, G., D’Addio, G., Bifulco, P., Cesarelli, M.: Machine learning models for the prediction of acuity and variability of eye-positioning using features extracted from oculography. Health Technol. 10, 961–968 (2020). https://doi.org/10.1007/s12553-020-00449-y
Ricciardi, C., Improta, G., Amato, F., Cesarelli, G., Romano, M.: Classifying the type of delivery from cardiotocographic signals: a machine learning approach. Comput. Methods Programs Biomed. 196, 105712 (2020). https://doi.org/10.1016/j.cmpb.2020.105712
Pintaudi, B.: Gli Standard Italiani 2018 Per La Terapia Del Diabete Mellito The 2018 Italian Standards for the treatment of diabetes mellitus. G. Ital. Farm. E Farm. 10, 5–14 (2018)
Zocchetti, C., Merlino, L., Agnello, M., Bragato, D.: Una nuova proposta per la cronicità: i CReG (Chronic Related Group). Tend. Nuove. 11, 377–398 (2011)
Bonora, E., Sesti, G.: Il diabete in Italia. Soc. Ital. Diabetol. (2016)
Baggiore, C., Calcaterra, F., Ciullo, I., Di Seclì, C., Falasca, P., Nogara, A., Baccetti, F.: Griglia per la valutazione di appropriatezza dei Percorsi Dia-gnostici Terapeutici Assistenziali (PDTA) per il diabete mellito
Sociosanitaria, P.S., Cecchi, A., Matteotti, E.A., Diabetici, R.P., Roberto Da Ros, A.: Linee Di Indirizzo Regionali Per La Gestione Dell’iperglicemia E Del Diabete In Ospedale (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
The authors have no conflict of interest to declare.
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Improta, G. et al. (2021). Management of the Diabetic Patient in the Diagnostic Care Pathway. In: Jarm, T., Cvetkoska, A., Mahnič-Kalamiza, S., Miklavcic, D. (eds) 8th European Medical and Biological Engineering Conference. EMBEC 2020. IFMBE Proceedings, vol 80. Springer, Cham. https://doi.org/10.1007/978-3-030-64610-3_88
Download citation
DOI: https://doi.org/10.1007/978-3-030-64610-3_88
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-64609-7
Online ISBN: 978-3-030-64610-3
eBook Packages: EngineeringEngineering (R0)